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Abstract 

The natural environment is being drastically affected by climate change. Under these severe environmental conditions, 

the growth and productivity of agricultural crops have reduced. Due to unpredictable rainfall, crops growing in the field are 

often exposed to waterlogging. This leads to significant crop damage and production losses. In this review paper, the mor-

phological and physiological adaptations such as development of aerenchyma, adventitious roots, radial root oxygen loss 

barrier, and changes in chlorophyll fluorescence parameters of crops under waterlogging are discussed. This will help to 

understand the effects of waterlogging on various crops and their adaptation that promotes crop growth and productivity. To 

meet the food requirements of a growing population, the development of waterlogging tolerant crops by screening and plant 

breeding methods is necessary for plant breeders. Better knowledge of physiological mechanisms in response to waterlogging 

will facilitate the development of techniques and methods to improve tolerance in crops. 
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INTRODUCTION 

Global changes in climatic conditions, including ex-

treme availability of water and temperature, have exacer-

bated the harshness and unpredictability of environmental 

conditions unfavourable to the development and survival of 

plant species in natural habitats. Agricultural food crops 

face problems with extreme weather events in times of cli-

mate change, leading to a significant decline in crop produc-

tivity and yield. In a highly dynamic and generous environ-

ment, plants must constantly regulate their metabolism to 

maintain growth and development. Therefore, it is necessary 

to identify the plant traits associated with maintenance in 

changing climate and enhancing the resilience of plant vari-

eties under deleterious stress conditions. 

Flooding is one of the abiotic stressors that can be ob-

served worldwide and has a significant impact on plant 

productivity and biodiversity [BAILEY-SERRES, BRINTON 

2012; HIRABAYASHI et al. 2013]. The frequency of floods 

has increased by about 65% in the last 25 years and causes 

greater climatic adversity worldwide than other severe cli-

matic events [CONFORTI et al. 2018]. Increasing flood 

events due to global warming are detrimental to plant com-

munities and affect the distribution of plants in natural eco-

systems [BAILEY-SERRES et al. 2010]. In addition, one-tenth 

(about 12 mln ha) of flooded cropland loses its productivity 

during each flood event [SHABALA (ed.) 2017]. 

India, surrounded by the Arabian Sea, the Bay of Ben-

gal and Indian Ocean is very prone to floods. According to 

Geological Survey, flood prone areas in India cover 12.5% 

of the country's land area (the top states indicated in Figure 1 

are affected by waterlogging/flooding). In India, about 8.11 

mln ha of area and 3.57 mln ha of arable land are affected 

by floods with a total loss of 13.400 mln rupees and 177.41 

USD [Map of India undated]. Rajasthan, a state of India, 

generally has a water deficit, but in the last 30 years, flood 

events have increased. There are many districts in Rajasthan 

which are considered flood prone areas including Ajmer, 

Barmer, Jodhpur, Pali, Sirohi, Udaipur, Chittorgarh, Jaipur, 

Kota, Sri-Ganganagar etc. which are located near the river 
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Fig. 1. Land area liable to flooding in India;  

source: Maps of India [undated] 

basins of Ghaggar, Banas, Luni and Chambal [RajRAS 

2020]. Due to these floods and waterlogging, the crops 

grown in these areas are drastically affected and suffer from 

various adverse conditions. 

Long-term waterlogging has negative effects on all 

growth stages of the plant throughout its life cycle and ulti-

mately leads to productivity losses [ARGUELLO et al. 2016; 

HERZOG et al. 2016; STRIKER, COLMER 2017; WANG et al. 

2017; ZHANG et al. 2016]. Waterlogging, flooding, or inun-

dation legitimately influences the distribution of oxygen in 

tissues and the distribution of various gases between cells 

restricts the exchange of oxygen and respiration in mito-

chondria (aerobic respiration) and in this way really affects 

the typical biochemical as well as physiological perfor-

mance of the plant [LIU et al. 2012; VOESENEK, BAILEY- 

-SERRES 2013]. The lower energy production leads to high 

accumulation of lethal compounds (e.g. aldehydes and alco-

hols) in the tissues [TAMANG et al. 2014]. The reduction in 

the rate of development of the plant at the vegetative stage 

under waterlogged conditions indicates that it is the most 

vulnerable stage [XU et al. 2013], as observed in soybean, 

cereals, canola, and wheat [ANDRADE et al. 2018; WOLL-

MER et al. 2018; ZHOU et al. 2020].  

Conventionally, plant breeding methods for the resili-

ence of waterlogging were founded as evaluating the extent 

of agronomic and morphological attributes, but now physi-

ologically based methods and cellular mechanisms are fun-

damental key parts of waterlogging resistance in plants. Cre-

ation of tolerant varieties to waterlogging is a major need of 

plant breeders [SHABALA 2011]. Biotechnological systems 

have used molecular information to create varieties imper-

vious to flooding or to provide alternative methods for 

flood-prone soils, such as bioethanol and biomass produc-

tion [FUKAO et al. 2019]. The serious effects of waterlog-

ging stress on crop performance, development and improve-

ment are of much greater concern, particularly in the context 

of global climate change [WANG et al. 2017, XU et al. 2018].  

Under these circumstances, plant resilience to adverse 

environmental conditions is determined not only by accli-

mation to the stress level itself, but also by recovery from 

a stressed condition. In a highly dynamic and generous envi-

ronment, plants need to constantly regulate their metabolism 

to maintain growth and development [YEUNG et al. 2018].  

To balance food supply with increasing population and 

develop a better agricultural system, this is a challenge for 

researchers and plant breeders for the future. For the pro-

duction of waterlogging tolerant crops and to improve agri-

cultural practices, more efforts are certainly expected to 

overcome these future difficulties. Although data availabil-

ity is there with respect to various abiotic stresses, no atten-

tion has been paid to waterlogging stress [TEWARI, MISHRA 

2018]. Therefore, the present review mainly focuses on the 

morphological and physiological adaptations of crops under 

waterlogging to understand the effects of waterlogging on 

various crops and their adaptations that promote plant 

growth and productivity. 

EFFECT OF FLOODING  

AND OTHER ASSOCIATED STRESSES  

Flood stress is a condition in which multiple stressors 

are created for plants, either water logging (i.e., only the 

roots are affected and a condition in which there is an exces-

sive amount of water in the soil pores) or submersion stress 

(i.e. entire plant shoots being completely submerged in wa-

ter) are among the major abiotic stresses that occur inten-

sively due to unpredictable and intense rainfall patterns and 

poor drainage of the water system [BALAKHNINA et al. 

2015; LIMAMI et al. 2014; PHUKAN et al. 2016]. After 

a flood event, when flood waters recede, plants were accli-

matized to the reduced light and low oxygen levels in turbid 

water and suddenly switched from aerobic to anaerobic con-

ditions. This switch from hypoxia to normal oxygen levels 

causes other additional stresses on the plants, namely,  

oxidative stress and dehydration due to root dysfunction, of-

ten leading to extreme dehydration of the plants [MAUREL 

et al. 2010]. These results show that plant survival after 

flooding requires tolerance to several other combined 

stresses, namely flooding, desiccation, and reoxygenation. 

This is particularly evident for plants that need to recover 

from flooding (as shown in Fig. 2). 

In the spring and winter seasons, excessive rainfall 

events can lead to prolonged waterlogging and flash flood 

in summer in many areas of world [KREUZWIESER, RENNEN-

BERG 2014]. Waterlogging affects agricultural land on 

a larger scale and has a wide range of economic con- 

sequences because of the enormous loss of yield and pro-

duction. This economic loss due to waterlogging is associ-

ated with lifelong social consequences. Waterlogging is 

a water condition that fills the pores and alters the condition 

of soil air circulation. Gases present in the soil pores are dis-

placed by the water and gradually diffuse into the water-

logged soil, resulting in a decrease in accessible oxygen (hy-

poxia) in the rhizosphere. The slow dispersion of oxygen 

and various gases in the soil limits the accessibility of oxy-

gen to plant roots and soil microorganisms [BALAKHNINA et 

al. 2015]. Plant roots rapidly consume accessible oxygen un-

der hypoxic conditions [PARAD et al. 2013]. Waterlogging 

leads to a lack of oxygen that generates adenosine triphos-

phate (ATP), and in this way limits the development and me-

tabolism as well as the endurance of sensitive plant species 

[JOSHI et al. 2020]. Oxygen deficiency or absence in the soil 

(hypoxia and anoxia, respectively) produced by anaerobic mi-

croorganisms leads to the accumulation of lethal metabolites 

(including H2S, N2, Mn2+, Fe2+) and reactive oxygen species 

(ROS) and affects stress hormones (e.g., abscisic acids and 

ethylene) in roots [CARVALHO et al. 2015; LORETI et al. 

2016; SAUTER 2013].  
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Fig. 2. Flooding stress: types, consequences, effect on soil as well as plant metabolism and responses of different plants  

to survive in these adverse conditions; source: own elaboration 

Waterlogging, soil erosion, water flow, and pedoturba-

tion affect both physicochemical and biochemical soil prop-

erties. The usable accumulation of humic substances 

changes with increasing soil wetness [FERRONATO et al. 

2019]. In the presence of waterlogging, the existing root can 

be affected by the lack of oxygen and the resulting low ATP 

formation due to the loss of oxidative phosphorylation [BAI-

LEY-SERRES, VOESENEK 2010]. 

In cold waterlogged rice fields, reduced soil tempera-

ture, less irrigated plow layer, and reduced availability of 

nutrients lead to a decrease in average yield [LIU et al. 

2016]. In waterlogged soils, a change in pH, electrical con-

ductivity (CE) and a decrease in oxidation-reduction poten-

tial (ε) have been observed [PEZESHKI, DELAUNE 2012; TO-

KARZ, URBAN 2015]. Physiological activities of plants are 

altered by waterlogging, i.e., respiration [YAMAUCHI et al. 

2017], photosynthesis [ARGUS et al. 2015; LI et al. 2019], 

nutritional traits [LIU et al. 2016], plant growth and survival.  

PLANT RESPONSES  

UNDER WATERLOGGING CONDITION 

The resistance mechanisms of plant species to waterlog-

ging depend mainly on the growth stage of the plant, the du-

ration of exposure, and the degree of waterlogging [ROMINA 

et al. 2014; SHAO et al. 2013; WU et al. 2018]. The ability 

of plant species to tolerate waterlogging is mainly related to 

the evolutionary developed resistance to the stressor [BO-

RELLA et al. 2019]. 

During waterlogging, plant responses vary by species, 

some of the plant species are tolerant, for example, rice 

(Oryza sativa), while others are highly sensitive, for exam-

ple cucumber (Cucumis sativus) [XU et al. 2017]. Highly 

sensitive plant species have adopted different mechanisms 

for survival [BAILEY-SERRES, COLMER 2014; ZHOU et al. 

2020]. 

Some anatomical, morphological, molecular, as well as 

physiological adaptations have been observed in crop plants 

during waterlogging stress that help plants to withstand 

these conditions [ARGUELLO et al. 2016; HERZOG et al. 

2016; JOGAWAT 2019; ZHANG et al. 2016; 2019b]. 

Under waterlogged conditions, the plant has adapted 

various resistance mechanisms, such as the development of 

aerenchymas, expanded accessibility of soluble sugars, 

higher activity of the glycolytic pathway, fermentation en-

zymes, and the development of (ROS) scavenging enzymes 

to protect against oxidative stress [ANEE et al. 2019; ARM-

STRONG et al. 2019; LAMBERS, OLIVEIRA 2019]. Plant re-

sponses to waterlogging are supported by hormones such as 

ethylene and abscisic acid and rely on species-specific ad-

aptations that may be genetically determined [PHUKAN et al. 

2016].  

During congestion stress, plants respond with altered 

gene expression controlled by epigenetics, transcription and 

protein synthesis [JUNTAWONG et al. 2014; LEE et al. 2011; 

MUSTROPH et al. 2010]. The altered gene expression 

changes plant morphology and physiology. Some of the 

other responses are altered plant metabolism, restricted 

plant growth, altered nutrient uptake, increased disease sus-

ceptibility, and reduced crop yield [DOUPIS et al. 2017]. 

In response to waterlogging, many crops have adapted 

anatomically, morphologically, physiologically and even at 

the molecular level. However, in this review, only the mor-

phological, anatomical, and physiological adaptations in 

different crops were discussed. 

Disturb the gas exchange. Induced phys-
iological malfunctions included impair-
ment of hormonal balance, photosynthe-
sis rate, and deficiency of nutrients, min-
erals and water uptake 

• High accumulation of lethal com-
pounds (i.e. aldehydes and alcohols 
in tissue of plant. 

• Influenced plant biochemical as well 
as physiological performance. 

• Plants show various anatomical, 
morphological, molecular, as well as 
physiological adjustment even in the 
entire plant. 

Flooding 
stress  

in plants 

An alteration in pH, 
electrical conductivity (σ), and 
decline in oxidation-reduction 

potential 

Accumulation of lethal metabolites 
(H2S, N2, Mn2+, Fe2+),  
stress hormones (abscisic acids 
and ethylene),  
reactive oxygen species 

Modification in the gene expression 

which is controlled from epigenetics, 

transcriptional and protein synthesis 

levels 

Reduced photosynthesis rate in bar-
ley. Lower maximum photochemical 
efficiency and net photosynthetic 
rate in alfalfa, Phaseolus vulgaris 
and Impatiens parviflora 

Presence of ROL, aerenchyma and 

adventitious roots of Melilotus sicu-

lus, legume species, rice, wheat and 

barley roots, as well as in propa-

gules of Colocasia esculenta 

Waterlogging, 

submergence, 

hypoxia dehydration, 

extreme desiccation, 

oxidative stress, 

reoxygenation 
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MORPHOLOGICAL AND ANATOMICAL 

ADAPTATIONS IN CROP PLANTS  

The high photosynthetic rate as well as the persistence 

of plants in waterlogged soil are often associated with 

a number of anatomical and morphological changes, includ-

ing the production of aerenchyma in root tissues, the appear-

ance of adventitious roots, and the development of a barrier 

to root radial O2 loss (ROL) [SAUTER 2013; VOESENEK, 

BAILEY-SERRES 2015; YAMAUCHI et al. 2017]. 

To adapt to waterlogging, various morphological as 

well as anatomical adaptations have been reported in plants, 

e.g., the formation of thick Casparian strips and the for-

mation of aerenchyma in the taproot of wheat, barley, and 

rice [LI et al. 2019; SAUTER 2013; SHIONO et al. 2019] and 

the formation of adventitious roots (ARs) in bittersweet (So-

lanum dulcamara), were observed under waterlogging con-

ditions [EYSHOLDT-DERZSÓ, SAUTER 2019]. 

Roots are highly sensitive organs of plants in flooded 

soils [PANOZZO et al. 2019; SAUTER 2013]. In roots, some 

morphological and anatomical changes are perceived that 

are important for the maintenance of root function under 

a hypoxic condition. The formation of aerenchymatous tis-

sue facilitates roots to maintain aerobic respiration by initi-

ating the distribution of various gases from the aboveground 

shoot to the waterlogged roots of plants. 

The waterlogging resistance responses in woody plants 

are the formation of new adventitious roots, the develop-

ment of aerenchymatous cells and the hypertrophy of lenti-

cels [KREUZWIESER, RENNENBERG 2014].  

Increases in stem diameter, reduced biomass accumula-

tion in roots, and delayed flower development have been re-

ported in different genotypes of soybean during waterlog-

ging [GARCIA et al. 2020]. 

Other mechanisms to cope with hypoxia or anoxia con-

ditions are the increase of nitrogen concentration in plant 

leaves and in certain areas of willow (Salix sp.) leaves 

[RODRÍGUEZ et al. 2018]. In the vegetative phase, a decrease 

in grain yield is observed in wheat under prolonged water-

logging [DING et al. 2020]. Significant reduction in length 

and dry weight under waterlogging has been reported in rice 

and wheat roots [NGUYEN et al. 2018]. Metabolic balance 

under excessive water treatment can be maintained by in-

creasing aerial roots in sorghum (Sorghum bicolour L.) 

[ZHANG et al. 2019a]. 

The presence of aerenchymatous tissue and a barrier to 

radial oxygen loss in the cortical part of the root and nodules 

under waterlogging was observed in tolerant legume spe-

cies. The permeability of the O2 diffusion barrier (ODB) of 

nodules was increased in tolerant cultivars improving toler-

ance to waterlogging [STRIKER, COLMER 2017]. Some of the 

additional adaptations in legumes are alternative nodulation 

mechanisms and metabolic regulation in response to hy-

poxia [ROBERTS et al. 2010]. The formation of nodules 

above adventitious roots is also observed in messina (Meli-

lotus siculus), a tolerant species [KONNERUP et al. 2018]. In 

certain species of legumes, there is a clear difference in the 

mechanisms of adaptation in a flood-prone zone [STRIKER, 

COLMER 2017].  

Some crop species, e.g., rice, can induce stem elonga-

tion in waterlogged conditions to reach soil level. These 

strategies rely on morphological changes to overcome lim-

iting (for normal growth processes) stress conditions [RU-

MANTI et al. 2020]. Ethylene biosynthesis is increased and 

it accumulates in the hypoxic root due to slow gas move-

ment into the rhizosphere [SASIDHARAN, VOESENEK 2015]. 

Ethylene promotes morphological adaptation in plants, for 

example, the development of aerenchyma and adventitious 

roots. There is no evidence for the formation of obstruction 

in radial O2 loss (ROL) by ethylene signalling. 

• Aerenchymatous tissue development in various plant 

parts 

Aerenchyma can provide a complete aeration channel 

for the transport of oxygen from leaves to plant roots; it can 

also remove other gases such as methane (CH4), carbon di-

oxide (CO2), nitrogen (N2), and ethylene (C2H2), allowing 

plant roots to grow normally even in waterlogged soil 

[SHIONO et al. 2019]. In many lowland and aquatic plants, 

a specific tissue that forms air spaces/channels (aeren-

chyma) is observed to survive under submerged, emerged, 

and floating conditions.  

Two categories of aerenchyma are found in taproots of 

waterlogging-tolerant plants: primary aerenchyma (in 

wheat, maize, and rice, formed by schizogenic and lyso-

genic cell disruption), present in primary tissues, and sec-

ondary aerenchyma, formed in secondary tissues (in roots of 

soybean) [TAKAHASHI et al. 2014; YAMAUCHI et al. 2018].  

The development of secondary aerenchymatous tissue 

(spongy tissue with many gas spaces formed in the phellem) 

in plant roots, stems, root nodules, and hypocotyls of some 

plants (legumes) increases the exchange of gases between 

submerged soil tissues and the atmosphere [PEDERSEN et al. 

2021]. 

The two types of aerenchyma give enlarged spaces for 

gas dispersion. Schizogenic aerenchyma develops by the 

disintegration of the adjacent acts (spread columns) of the 

cells of the bark and by the spread of the preexisting inter-

cellular spaces, followed by the division and enlargement of 

the cell [TAKAHASHI et al. 2014]. 

In wheat seedlings, the development of aerenchymatous 

tissue in the seed roots has been demonstrated, originating 

from centrally located bark cells, e.g. pre-erenchymatous 

cells, and extending to the surrounding cells [XU et al. 

2013]. In Melilotus siculus (a waterlogging-tolerant plant 

species), secondary aerenchyma (aerenchymatous phellem) 

developed in roots and hypocotyls [TEAKLE et al. 2012]. 

In maize (Zea mays) and its tolerant to the waterlogging 

ancestor Zea nicaraguensis, enhanced aerenchyma for-

mation is associated with tolerance to waterlogging 

[WATANABE et al. 2017]. 

In a grafting experiment in bitter melon (Momordica 

charantia L.), increased aerenchyma formation suggests 

that grafting improves tolerance to waterlogging [PENG et 

al. 2020]. The formation of aerenchyma is also observed in 

the graft roots of taro (Colocasia esculenta) under moisture 

conditions [ABIKO, MIYASAKA 2020]. 

The formation of aerenchyma has also been reported in 

many xerophytic plants under waterlogging stress [HAQUE 
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et al. 2010]. Treatment with ACC (1-amino-cyclopropane-

l-carboxylic acid), i.e., a precursor of ethylene biosynthesis 

in plant roots, promoted internal oxygen movement to the 

root tip and facilitated aerenchyma formation in plants, sug-

gesting that ethylene induces all adaptive responses under 

waterlogging [YAMAUCHI et al. 2014]. In rice roots, an ex-

ogenous supply of ACC (1-amino cyclopropane-l-carbox-

ylic acid) produces aerenchyma, suggesting that ethylene is 

the key enzyme for the development of waterlogging-toler-

ant responses [YAMAUCHI et al. 2014]. On barley (Hordeum 

vulgare) root tips grown under fully aerated and enriched 

nutrient solution, ethephon (ethylene-producing chemical) 

treatment promoted the build-up of aerenchyma [SHIONO et 

al. 2019]. Ethylene was also shown to play a significant role 

in the development of aerenchyma in plants subjected to wa-

terlogging stress. 

• Development of novel adventitious roots (ARs) as an 

alternative of primary root 

Adventitious root production is an adaptation to water-

logging stress that increases the dispersion of gasses and de-

creases separation for oxygen dispersal [SAUTER 2013]. To 

survive in waterlogged soil, the development of ARs is 

a significant change for plants to continue the normal func-

tion of primary roots as these roots are damaged by water-

logging [YAMAUCHI et al. 2014]. Recently, they formed ad-

ventitious roots with aerenchyma, are developed from the 

stem to restore root work in plant species, such as water and 

supplement uptake, and adhere to the surface [SAUTER 

2013]. 

Adventitious roots (ARs) are connected to the stem by 

aerenchyma, which facilitates oxygen diffusion from flood-

water to aerial shoots [AYI et al. 2016]. The adventitious 

roots originate from the basal region of the stem or the wa-

terlogged part of the hypostyle [BAILEY-SERRES et al. 2012; 

SAUTER 2013]. A high rate of adventitious root development 

under waterlogging is observed in maize and its waterlog-

ging-tolerant stem variety, Zea nicaraguensis [WATANABE 

et al. 2017].  

These roots generally transform into basal roots when 

the primary root structure is no longer able to supply water 

and minerals to the shoot [YANG et al. 2016]. Adventitious 

roots regularly emerge from the basal part of the stem or in 

the area where lenticels are abundant, and their development 

is lateral and parallel to the water-soil surface in Sedum 

spectabile cultivars [ZHANG et al. 2019c]. In sesame 

(Sesamum indicum), adventitious roots represent a toler-

ance strategy to waterlogging [WEI et al. 2013]. 

Adventitious root development is constrained by com-

plex genetic events at each developmental stage, such as 

during root primordia development, root emergence, and 

continuous growth. Genetically controlled factors of adven-

titious root development have been recognized in rice [BEL-

LINI et al. 2014]. The formation of floating adventitious 

roots depends on several ecological parameters, such as wa-

ter depth (e.g. whether or not part of the aboveground shoot 

is flooded), oxygen levels, light penetration and, in addition, 

the concentration of dissolved CO2 (the last two affect the 

carbohydrate status of plants) during flooding.  

Adventitious roots are formed in cucumber by treatment 

with auxin such as indole-3-acetic acid (IAA) and ethylene 

(C2H2). In cucumber, induction of ARs by auxin is ethylene-

dependent, but induction by ethylene is auxin-independent 

[QI et al. 2019]. The amount of adventitious roots was in-

creased in soybean cultivars in response to overwatering 

[KIM et al. 2019]. In maize seedlings, waterlogging induced 

the development of adventitious roots to increase tolerance 

under this stress [YU et al. 2019]. 

Ethylene is the key inducer for all versatile responses to 

waterlogging in tomato (Solanum lycopersicum) plants. Eth-

ylene promoted the formation of AR primordia on the hypo-

cotyl surface in tomato [VIDOZ et al. 2010]. Ethephon (eth-

ylene releasing compound) treatment increased the develop-

ment of adventitious root in the grain of barley [SHIONO et 

al. 2019]. 

Nitric oxide (NO) is involved in resistance to waterlog-

ging by increasing adventitious root production in several 

plant species. To study the effects of NO, sodium nitroprus-

side (a donor of NO) was used in suaeda (Suaeda salsa). It 

shows that NO signalling expands resistance under water-

logging conditions and increases adventitious root develop-

ment in Suaeda salsa [CHEN et al. 2016]. Also, the genera-

tion of reactive oxygen species is a major element of signal-

ing related to the emergence of adventitious roots under  

waterlogging stress [STEFFENS, RASMUSSEN 2016]. 

• Development of barrier for radial root oxygen loss 

(ROL) 

Some marsh plants form a structural boundary that 

blocks the escape of oxygen from apical root regions, 

termed the barrier to radial oxygen loss [EJIRI, SHIONO 

2019]. Environmental signals activate the induction of the 

ROL barrier in the root, a factor that, together with the gas-

filled porosity of the tissue, promotes internal air circulation 

[COLMER et al. 2019].  

Induction of the radial O2 loss barrier promotes longitu-

dinal O2 dispersion and may also prevent phytotoxin invasion 

[PEDERSEN et al. 2021]. Induction of the ROL barrier lowers 

the level of oxygen transported through aerenchymatous tis-

sues to the root tip and allows root development in anoxic 

soil [EJIRI, SHIONO 2019]. 

Plant roots of some species establish a ROL barrier un-

der waterlogged conditions (inducible ROL barrier), while 

the remaining species allow oxygen to escape under aerated 

conditions (constitutive ROL barrier). The inducible ROL 

barrier is formed by suberin and lignin deposits in the outer 

parts of the roots in the outer cell space (apoplast). Some 

wetland plant species such as Echinochloa (a weed plant 

grown in rice paddies) establish a constitutive ROL barrier, 

i.e. it is present even in the absence of waterlogging. A con-

stitutive ROL boundary is not present in barnyard grass 

(E. oryzicola), which is commonly found in rice fields under 

aerated conditions. However, 90% of the sclerenchyma was 

very woody; it released oxygen from the lower part of the 

roots. A larger percentage (approximately 55%) of root  

exodermis cells not formed by suberin lamellae was  

observed in this plant. These results suggested that suberin 

is an important component in the formation of the constitu-

tive ROL barrier [EJIRI, SHIONO 2019]. 
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Waterlogged soils are composed of monocarboxylic  

acids produced by anaerobic microorganisms. These or-

ganic acids accumulate as phytotoxins and enhance the for-

mation of radial root oxygen loss barrier in rice roots 

[COLMER et al. 2019]. In shorter roots, this barrier formation 

is weaker than in longer roots of plant species. This suggests 

that the age and growth stages of the root tissue influence 

this formation of the ROL barrier [SHIONO et al. 2011]. 

A barrier to radial root oxygen loss formed by lateral 

roots emerging from adventitious roots was investigated in 

Zea nicaraguensis using root peeling electrodes and O2 mi-

crosensors. Stimulation of the barrier to radial oxygen loss 

associated with tolerance to waterlogging in this plant. The 

barrier of ROL is also present in lateral roots, requiring a re-

evaluation of the function of roots as a site of oxygen loss 

[PEDERSEN et al. 2021]. 

Hordeum marinum (a wild related variety of wheat) is 

tolerant to waterlogging by creating a barrier to root decline 

radial oxygen O2 loss. It increases the porosity of the root 

(gas volume/root volume), which is associated with toler-

ance to waterlogging [KONNERUP et al. 2017]. 

At the time of root radial oxygen O2 loss barrier for-

mation, the first stage is electron-dense material develop-

ment in hypodermal and exodermal cell walls [SHIONO et al. 

2011]. A transcriptome study conducted in rice using laser 

micro dissected tissues of the root outer cell wall suggested 

that many genes involved in suberin biosynthesis, but not 

lignin biosynthesis, were up-regulated during ROL barrier 

development in rice plant roots [SHIONO et al. 2014]. 

In rice roots, the introduction of the ROL barrier is cou-

pled with high expression of genes associated with suberin, 

and it is also responsive to phyto-toxins in waterlogged soils 

[YAMAUCHI et al. 2018]. In addition, the accumulation of 

malate in rice root may form a ROL barrier, suggesting that 

malate is also important for the biosynthesis of fatty acids 

(FAs), which provide substrates for suberin biosynthesis 

[KULICHIKHIN et al. 2014].  

Surprisingly, other toxic compounds produced in water-

logged soils as a product of metabolic activity of anaerobic 

microorganisms also developed ROL barrier in plant roots 

of submerged species; some of these compounds were or-

ganic acids and iron metal (Fe2+) [KOTULA et al. 2017]. Fur-

ther studies are needed to explain the signalling cascades 

and biochemical control during ROL barrier development 

and to show the effects of the rigid ROL barrier and root 

morphology (role of lateral root) on the uptake of water and 

minerals in the persistent waterlogging and subsequent 

drainage system (with the roots recovering growth) 

[YAMAUCHI et al. 2017]. 

PHYSIOLOGICAL REACTIONS  

OF CROP PLANTS UNDER WATERLOGGING 

Physiological disorders caused by waterlogging include 

impaired hormonal balance, photosynthetic rate, and lack of 

nutrients, minerals, and water uptake, which cause poor de-

velopment when flooded. Waterlogging causes stomata clo-

sure associated with photosynthetic efficiency of plants, dis-

rupting gas exchange and ultimately reducing yield and 

productivity [YU et al. 2015; ZHU et al. 2016]. 

Plants also show a decrease in stomatal conductance 

(gs) under waterlogging [BARICKMAN et al. 2019; POSSO et 

al. 2018], often caused by reduced assimilation of net CO2 

and chlorosis of the leaf [DE SOUZA et al. 2013; POSSO et 

al. 2018]. Reduced net CO2 accumulation is caused by re-

stricted uptake of water (H2O) and nutrients (P, Ca, Mg, Fe, 

Mn, Mo, etc.), which reduce plant development, growth and 

organic matter accumulation [MARASHI 2018; PLOSCHUK et 

al. 2018; YE et al. 2018]. 

Stress due to waterlogging affects the activity of photo-

synthetic enzymes, alters the structure of chloroplasts, and 

damages the reaction centers (RCs) of photosynthesis [LIN 

et al. 2016; REN et al. 2016; ZHENG et al. 2009]. Decreased 

chlorophyll contents (especially chlorophyll a and b) have 

been observed in water-soaked grown plants [BANSAL, SRI-

VASTAVA 2015]. This leads to an overall decrease in photo-

synthetic rate (PN) and ultimately a decrease in crop yield 

and production [ZHANG et al. 2019a]. Under waterlog-

ging/flooding conditions, several ROS were produced as 

a result of oxidative damage due to excessive reduction in 

the electron transport chain [LAL et al. 2019]. 

Bermuda grass (Cynodon dactylon) exposed to water-

logging shows reduced leaf photosynthesis, a decrease in 

transpiration rate (E), reduced stomatal conductance (gs), 

and loss of root fresh weight [XIAO, JESPERSEN. 2019]. 

Lower stomatal conductivity affects plant root water uptake 

from soil water and is the most important limiting factor for 

plant development [BARICKMAN et al. 2019]. 

In maize, a significant reduction in transpiration, sto-

matal conductance, and photosynthetic rate (PN) was ob-

served due to excessive soil moisture. Other physiological 

parameters were also weakened under waterlogging in dry-

land crops [TIAN et al. 2019]. Similar results were also re-

ported in winter wheat (Triticum aestivum) [ABID et al. 

2018]. Reduction in leaf gas exchange was also observed in 

soybean crop [GARCIA et al. 2020]. 

• Waterlogging induced anaerobic respiration and alter-

ation of cellular metabolites 

Waterlogging stress represents a hypoxic state (below 

21% O2) in which a shift from the oxygenated to the low-

energy anaerobic state occurs to support plant growth. It in-

volves various biochemical adaptations, the pathways of an-

aerobic digestion, and the formation of defensive com-

pounds for the removal of phytotoxic products [EVANS, 

GLADISH 2017] which are important for plant persistence 

under waterlogged conditions. 

There are two types of anaerobic respiration, one is eth-

anolic fermentation and the other is lactate fermentation [DU 

et al. 2018]. In ethanolic fermentation, a two-step process is 

involved in which first pyruvate decarboxylase (PDC) de-

carboxylates pyruvate to acetaldehyde and then alcohol de-

hydrogenase (ADH) converts acetaldehyde to ethanol by 

producing oxidised nicotinamide adenine dinucleotide 

(NAD+). In lactate fermentation, lactate dehydrogenase 

(LDH) catalyzed pyruvate to lactate using reduced nicotin-

amide adenine dinucleotide (NADH) [ZHANG et al. 2017]. 

Fermentation leads to the accumulation of phytotoxins 

and depletion of carbohydrate reserves [LORETI et al. 2016; 

PUCCIARIELLO, PERATA. 2017]. In this condition, plants use 
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glycolysis for energy production and mobilization of stored 

sugar reserves [LORETI et al. 2016]. The primary substrates 

of fermentation are water-soluble carbohydrates (WSCs). 

The reserves of water-soluble carbohydrates WSCs can be 

reduced when the balance between carbohydrate metabo-

lism and photosynthesis is altered during waterlogging 

[JURCZYK et al. 2016], and these changes affect the fermen-

tation rate and survival of some species [CHEN et al. 2013; 

LIU et al. 2017]. 

Therefore, waterlogging and anaerobic metabolism 

leads to critical growth inhibition and eventual death of 

many plants due to energy depletion and accumulation of 

phyto-toxic products (such as lactate) and carbon loss (via 

ethanol loss from roots) [TAMANG et al. 2014].  

Anaerobic respiratory enzymes, such as pyruvate dehy-

drogenase (EC 1.2.4.1), alcohol dehydrogenase (EC 

1.1.1.1), and lactate dehydrogenase (EC 1.1.1.27) are criti-

cal to the defense mechanism of plants to survive in water-

logging stress. Their increased activity provides energy to 

drive normal root function in waterlogging for normal plant 

growth [BARICKMAN et al. 2019].  

These fermentative enzymes play key roles to protect 

plants under the hypoxic conditions such as preventing the 

accumulation of fermentative products (pyruvate and lac-

tate), also helping in NADH cycle and production of ATP at 

substrate level [BORELLA et al. 2019; BUI et al. 2019]. How-

ever, the enzyme lactate dehydrogenase (LDH) produces 

lactic acid, which lowers cytosolic pH [BANTI et al. 2013]. 

Anaerobic respiration was observed in almond (Prunus 

dulcis) during waterlogging treatment [ZHOU et al. 2021]. 

Increased activity of anaerobic respiration enzymes was 

studied in seedlings of wheat grown under waterlogging 

conditions. The enzymatic activity of pyruvate decarbox-

ylase, alcohol dehydrogenase, and lactate dehydrogenase 

was increased in wheat depending on the genotypes and 

higher alcohol and lactate content was also observed [DU et 

al. 2018]. 

• The antioxidant mechanism to defense against water-

logging induced stress 

A high level of formation of reactive oxygen species is 

an important phenomenon in hypoxia or anoxia and espe-

cially in oxygenation [PUCCIARIELLO, PERATA 2017]. In this 

situation, an imbalance of redox potential can generally trig-

ger oxidative damage to various cellular metabolites. It 

leads to changes in membrane fluidity, peroxidation of un-

saturated fatty acids of the cell membrane, denaturation of 

proteins, inactivation of enzymes, genomic damage, and ir-

reversible metabolic changes leading to cell apoptosis 

[LORETI et al. 2016]. 

To survive under oxidative stress, plants generate an an-

tioxidant defence system by increasing the activity of ROS 

and ROS through the enzymatic and non-enzymatic antiox-

idant mechanism to eliminate oxidative damage under hy-

poxic conditions [BALAKHNINA et al. 2015; IRFAN et al. 

2010]. To counter the hazardous effects of ROS, plant spe-

cies have evolved several defensive antioxidant systems. 

Several enzymes such as ascorbate peroxidase (APX), su-

peroxide dismutase (SOD) and catalase (CAT) play key 

roles in the antioxidant mechanism [FUKAO et al. 2019].  

Under waterlogging stress, malondialdehyde (MDA) is 

used as a marker of oxidative lipid damage, which is the 

product of lipoperoxidation of cell membranes [BALAKH-

NINA et al. 2015]. MDA is indirectly proportional to antiox-

idant activity, if MDA value is high, then the antioxidant 

ability is low and it decreases resistance during waterlog-

ging situation. 

During waterlogging, the enzymes of ROS scavenging 

such as catalase, glutathione reductase (GR) and peroxidase 

(POD) were activated in many plants. For survival under 

short-term waterlogging, higher levels of ROS interceptors 

were observed in Chinese cherry (Prunus pseudocerasus) 

genotypes [JIA et al. 2019]. Waterlogging treatment in-

creased H2O2 concentration in maize genotypes [CHUGH et 

al. 2016]. More H2O2 content and superoxide radical was 

accumulated of roots in pigon pea (Cajanus cajan) geno-

types [DUHAN et al. 2017]. In sedum genotypes, the higher 

activity of SOD, CAT and APX was observed during water-

logging treatment [ZHANG et al. 2019c]. 

• Changes in photosynthetic parameters to waterlogging 

responses 

Dynamic monitoring of various photosynthetic and 

chlorophyll fluorescence parameters were studied under  

waterlogging conditions, it reveals the growth strategies of 

plants [PAN et al. 2019]. The maximum quantum efficiency 

(Fv/Fm) of photosystem II and plant phenotyping studies are 

evaluated using chlorophyll fluorescence under abiotic 

stress. Chlorophyll fluorescence and chlorophyll content 

were reduced in blackgrass (Alopecurus myosuroides) gen-

otypes during waterlogging stress and light-harvesting com-

plex (LHC) was damaged in blackgrass and tomato during 

waterlogging situation [BANSAL et al. 2019]. 

In barley, photosynthesis was reduced under early wa-

terlogging conditions due to stomatal and non-stomatal con-

straints. During late waterlogging, damage to the photosyn-

thetic machinery and reduction in mesophyll stomatal con-

ductance by chlorophyll fluorescence was observed in bar-

ley. In addition, photosynthesis was generally reduced in 

oilseed rape (Brassica napus subsp. napus) during late and 

early waterlogging due to non-stomatal limitations [FUKAO 

et al. 2019]. 

A study on Arabidopsis thaliana investigating the dam-

age caused by waterlogging at different temperatures 

showed that less effects of waterlogging were observed at 

lower temperatures than at higher temperatures. Waterlog-

ging causes less damage as shown in a study at short tem-

perature (about 16°C) compared to high temperature (about 

22°C). Several photochemical properties such as chloro-

phyll fluorescence, electron transport rate (ETR), photo-

chemical quenching (qP), maximum quantum yield (Fv/Fm), 

chlorophyll a and b content, and leaf temperature were more 

constant at low temperature. Malondialdehyde accumula-

tion was also reduced in plants under waterlogging condi-

tions at low temperature [XU et al. 2019]. 

Under waterlogging conditions, the maximum photo-

chemical efficiency and net photosynthetic rate of leaves 

were lower compared to the control. In alfalfa (Medicago 

sativa), the net photosynthetic rate and maximum photo-

chemical efficiency (Fv/Fm) were increased by pretreatment 
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with melatonin [ZHANG et al. 2019b]. A similar study was 

conducted in star magnolia (Magnolia sinostellata), result-

ing in changes in chlorophyll metabolism and photosynthe-

sis that are beneficial for the growth of this endangered plant 

species [YU et al. 2019]. 

In sorghum, photosynthesis is affected by excessive wa-

ter treatment. In sorghum, ETR, qP and actual PSII quantum 

yield (YII) decreased while non-photochemical quenching 

(NPQ) increased after water stress treatment. This decrease 

in qP indicates that the amount of open reaction centers of 

PSII decreased and the potential activity of PSII also de-

creased [ZHANG et al. 2019a]. The photochemical quench-

ing qP and maximum quantum yield Fv/Fm decreased sig-

nificantly and NPQ increased slightly in cotton (Gossypium 

hirsutum) sensitive genotypes during water stress [PAN et 

al. 2019]. The value of photochemical quenching coefficient 

(qP) and reduced electron transport rate of PSII is also de-

creased in French bean (Phaseolus vulgaris) and the varia-

tion in the trapped amount of light energy used in organic 

acid formation finally reduces the effective quantum yield 

of photosystem II (ФPSII) [MATHOBO et al. 2018]. 

Electrolytic leakage (EL) and malondialdehyde (MDA) 

concentrations increased dramatically in alfalfa plants dur-

ing waterlogging treatment, but a significant decrease in 

chlorophyll content was also observed. Melatonin pre-treat-

ment strongly suppressed these responses in alfalfa [ZHANG 

et al. 2019b]. The growth- and photosynthesis-maintaining 

mechanisms of melatonin have been previously demon-

strated for many other plant species under various stress 

conditions [ZHAO et al. 2017; ZHENG et al. 2017].  

In Impatiens parviflora (small-flowered touch-me-not 

plant), low light and waterlogging conditions decrease light 

energy absorption by photosynthetic antenna pigments, 

block photosynthetic electron transport, and reduce photo-

synthetic enzyme activity and carbon assimilation, thereby 

impairing photosynthesis and inhibiting growth [QUINET et 

al. 2015]. Due to re-oxygenation, ROS is overproduced in 

leaves, which may lead to photosynthetic imbalance, re-

duced stomatal opening and damage to photosynthetic pig-

ments, and finally, during this condition, the light collection 

system of the electron transport chain in chloroplasts is 

overloaded, causing electrons to escape and accumulate 

ROS in the leaves of water-saturated plants [GILL, TUTEJA 

2010]. 

CONCLUSIONS 

Waterlogging poses a major threat to agriculture and af-

fects crop yields and productivity worldwide. Food crops 

can survive under these critical conditions by making com-

plex anatomical, biochemical and physiological adapta-

tions. The morphological resistance mechanism involves the 

production of new adventitious roots, aerenchyma, and 

a barrier to radial oxygen loss in the roots of the crop. A de-

fining feature of tolerance under waterlogging is the altera-

tion of various physiological properties such as photosyn-

thesis, stomatal conductance and gas exchange etc. and bio-

chemical adaptations such as increased fermentative en-

zyme content, energy crisis and increased glycolysis supply. 

Various long and short-term responses to waterlogging 

stress have been recognized in plants depending on the spe-

cies as well as different genotypes of the species. Some of 

the plant species are tolerant while others are susceptible to 

waterlogging. These resistant species are able to grow under 

such conditions because they develop certain modifications 

that help them adapt to the conditions of waterlogging. 
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