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Abstract: Over the past two decades, artificial neural networks (ANN) have exhibited a significant progress in 
predicting and modeling non-linear hydrological applications, such as the rainfall-runoff process which can provide 
useful contribution to water resources planning and management. This research aims to test the practicability of using 
ANNs with various input configurations to model the rainfall-runoff relationship in the Seybouse basin located in 
a semi-arid region in Algeria. Initially, the ANNs were developed for six sub-basins, and then for the complete 
watershed, considering four different input configurations. The 1st (ANN IP) considers only precipitation as an input 
variable for the daily flow simulation. The 2nd (ANN II) considers the 2nd variable in the model input with 
precipitation; it is one of the meteorological parameters (evapotranspiration, temperature, humidity, or wind speed). 
The third (ANN IIIP,T,HUM) considers a combination of temperature, humidity, and precipitation. The last (ANN 
VP,ET,T,HUM,Vw) consists in collating different meteorological parameters with precipitation as an input variable. 
ANN models are made for the whole basin with the same configurations as specified above. Better flow simulations 
were provided by (ANN IIP,T) and (ANN IIP,Vw) for the two stations of Medjez-Amar II and Bordj-Sabath, respectively. 
However, the (ANN VP,ET,T,HUM,Vw)’s application for the other stations and also for the entire basin reflects a strategy 
for the flow simulation and shows enhancement in the prediction accuracy over the other models studied. This has 
shown and confirmed that the more input variables, as more efficient the ANN model is.  

Keywords: artificial neural networks (ANNs), meteorological parameters, rainfall-runoff, semi-arid region, Seybouse 
basin, various input configurations  

INTRODUCTION  

The management of water resources is a major political, 
economic and social issue that governments and institutions 
identify as a priority on the political agenda in the 21st century 
[BIED-CHARRETON et al. 2004]. Currently, the challenge for Algeria, 
and more precisely for the Seybouse basin, is how to better meet 
user needs (domestic water supply, industry, agriculture) with 
relatively limited water resources; especially considering the 
inefficient and improper use of available water resources and high 
increase in demand due to population growth and industrial and 
agricultural development. Consequently, water resources in the 
Seybouse basin are subject to strong pressures which seriously 

threaten their sustainability. Hence, the interest remains high as 
regards the development of integrated management approaches 
that consider the watershed as a relevant management unit 
[BRAHMIA, CHAAB 2013]. Hydrological modeling of the Seybouse 
basin can be a fundamental tool to improve its management and 
allows water resource managers to draw up an effective and 
rational strategy. Additionally, it allows a hydrological risk 
assessment linked to flood/drought designed to avoid losses in 
public and private property, human lives and tangible goods, 
health and ecological risks. Such risk are likely to occur due to 
disasters. Several models have been developed to simulate runoff 
forecasting. Runoff is used in many water management applica-
tions, such as forecasting extreme floods and dry periods, power 
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generation, designing of hydraulic structures, and irrigation 
[SRINIVASULU, JAIN 2006]. These rainfall-runoff forecast models are 
classified as an empirical/black box and conceptual or physical 
distributed models. The theoretical black box and conceptual 
models are generally used for modeling rainfall-runoff, since 
distributed models based on physics are too complex and require 
intensive and cumbersome data [RAJURKAR et al. 2002]. Moreover, 
the significant lack of environmental data, such as geomorpho-
logical characteristics of the basin (topography, vegetation, soil 
types …), may hamper the use of conceptual models. Such models 
require large volumes of data for calibration and validation 
leading to computational inefficiency. Thus, the rainfall runoff 
mechanism deterministic or conceptual models cannot be applied 
to basins for which detailed data and parameters are not available 
[VILANOVA et al. 2019]. As a result, their use has been viewed with 
some skepticism by researchers and has not become very popular 
[GRAYSON et al. 1992]. This led us to focus on a separate category 
of models, i.e. the black box or empirical models. The application 
of black box models based on the ANN technique has become 
increasingly popular in hydrology and water management due to 
their ability and potential to provide satisfactory modeling of the 
intricate rainfall-runoff mechanism under limited data availability 
[AICHOURI et al. 2015; BENZINEB, REMAOUN 2016; MACHADO et al. 
2011; SRINIVASULU, JAIN 2006; YASEEN 2015]. BHADRA et al. [2010] 
and REZAEIANZADEH et al. [2013] have compared the performance 
of different conceptual and ANN techniques for modeling and 
reported that the ANN approach which does not have physically 
realistic components and parameters, outperformed conventional 
conceptual models. 

A multi-layer perceptron MLP-feed-forward is the most 
commonly used ANN in engineering applications [VIDYARTHI et al. 
2020]. COULIBALY [1999] has mentioned that approximately 90% of 
hydrological neural network applications use multilayer feed- 
forward neural networks trained by the back propagation (BP) 
algorithm. For an efficient back propagation training, a Leven-
berg–Marquardt numerical optimization technique [LEVENBERG 

1944; MARQUARDT 1963] can be incorporated into the back 
propagation algorithm to expedite and improve the training and 
to reach optimal solutions to several problems [BHADRA et al. 
2010]. As a result, a three-layered feed-forward neural network, 
trained with backpropagation (FFBP) using Levenberg–Marquardt 
(LM) algorithms, has been applied in this study.  

RANDRIANARIVONY et al. [2009] have concluded that ANNs 
represent very useful tools for rainfall-runoff models to fill the 
gap in survey data. However, the more data we have, the more 
realistic predictions can be achieved. In addition, some papers 
have shown the possibility of using other ANN input variables 
than precipitation to increase the developed ANN performance to 
predict runoff [LIN, CHEN 2008]. As a postulate and novelty, the 
article purports that a simple adjustment to ANN input data can 
be made to ameliorate their performance in flow simulation. For 
example, the flow not only depends on total rainfall, but also on 
other meteorological parameters. Therefore, we believe that the 
use of evapotranspiration, humidity, temperature and wind 
velocity as input parameters for ANNs can have a positive impact 
on their performance. The major goal of the article is to 
investigate the application of ANNs with different input 
configurations to simulate flow in a semi-arid area (Seybouse 
basin case). The daily average precipitation, temperature, 
potential evapotranspiration, humidity, wind velocity and flow 

data derived from the Seybouse basin have been employed to 
develop all the ANNs models. A variety of standard statistical 
performance evaluation measures and graphical performance 
indicators have been employed to validate all the investigated 
models. The paper begins with a brief presentation of the study 
area followed by the description of material and methods where 
data, details of the model’s development, and performance 
criteria are presented. Results are discussed in the next chapter 
before concluding remarks.  

MATERIAL AND METHODS 

STUDY AREA  

The Seybouse River basin is located the North-East of Algeria 
(Fig. 1). With an area of 6,471 km2, it is one of the constituent 
parts of Constantinois-Seybouse-Mellegue, a large hydrographic 
basin [Décret exécutif N°96-100]. The basin is one of the 
principal collectors of rainwater from extreme N-E Algerian 
regions. It extends south-west over a distance of 160 km to the 
Saharan Atlas, and it reaches a maximum width of 120 km in its 
section at Jebel-Ouahch. The main river, wadi-Seybouse, of the 
total length of 240 km drains the entire surface of the basin. It 
constitutes an important water source, used for agricultural plains 
irrigation. It originates from Heractas and Sellaoua high plains 
and ends in Annaba coastal plain to flow into the Mediterranean 
Sea. It is formed by the confluence of Cherf and Bouhamdane 
Rivers at Madjez Amar and receives two other tributaries of 
unequal importance: wadi Mellah and wadi Ressoul Rivers. The 
Seybouse basin is divided into three parts, namely Haute- 
Seybouse, Moyenne-Seybouse and Basse-Seybouse. It is spread 
over seven provinces in eastern Algeria, and it covers the entire 
Wilaya of Guelma, and partially the following Wilaya: Oum-El- 
Bouaghi; Constantine; Skikda; Souk-Ahras; Annaba and El Taref. 
The area includes 68 municipalities of which 30 are fully within 
the area examined. Water resources are vital to support the 
majority of economic activities in the region. The basin's climate 
varies from the typical Mediterranean to semi-arid. Average 
annual precipitation ranges from 700 mm to 400 mm, reaching 
from 90 to 120 mm monthly levels in December–January. 
Minimum temperatures are in December–January (less than 10° 
C) and maximum in July or August (between 25 and 30°C). The 
average annual evapotranspiration is around 1371 mm while the 
surface runoff represents 79 mm·y–1. 

DATABASES 

The compiled database represents daily sets of rainfall-runoff 
values and meteorological variables (evapotranspiration, humidity, 
temperature and wind velocity) for the Seybouse basin at different 
periods for each hydrometric station. Due to the unavailability of 
data at these stations for the same periods, the data were studied at 
different periods. Data were collected from the database available 
in the National Agency of Water Resources and National Office of 
Meteorology in Algeria (Fr. Agence Nationale des Ressources 
hydrauliques – ANRH and Office National de Météorologie – 
ONM) and POWER Data Access Viewer v2.0.0 (URL: https:// 
power.larc.nasa.gov/data-access-viewer/). Table 1 shows data for 
gauge stations of the Seybouse basin. 
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The six hydrometric stations cited above are distributed 
throughout the study basin, each one is provided with a rainfall 
gauge and with the same availability of data as the hydrometric 
station. The runoff/rainfall station classification is as follows: 
“Moulin Rochefort / Ain Makhlouf”, “Medjez-Amar II / Medjez- 
Amar II”, “Bordj-Sabath / Bordj-Sabath”, “Bouchegouf / wadi 
Cheham”, “Mirebek / Boukhamouza”, “Ain Berda / Ain Berda”. 

Based on the ArcGis software, Figure 1 shows the Seybouse 
basin and its division into sub-basins, as well as the distribution 
of six hydrometric and rainfall stations.                    

ARTIFICIAL NEURAL NETWORK (ANN) TRAINING  

Neural networks consist of simple elements (or neurons) that 
work in parallel. These elements are strongly inspired by the 
Nervous Biological System. An ANN (Fig. 2) carried-out by 
CorelDRAW X6 includes a set of components called artificial 
neurons, distributed among the layers that are mathematically 
interconnected via a transfer function [MACHADO et al. 2011]. The 
strength of the neuronal connection in adjacent layers is known 
as weight. There are different types of ANN, the most common of 
which is the ANN Multilayer Perceptron (MLP). the MLP is                   

made-up of three layers, i.e. an input layer, a hidden (inter-
mediate) layer and an output layer. REZAEIANZADEH et al. [2013] 
have applied the standard conceptual HEC-HMS’s soil moisture 
accounting (SMA) algorithm and the multi-layer perceptron 
(MLP) for forecasting daily outflows at the Khosrow Shirin basin 
outlet, their findings indicate that the MLP can predict the daily 
flow with a higher forecasting efficiency than the conventional 
hydrological model HMS SMA. Additionally, the MLP is much 
simpler to apply than the HMS SMA by using a simple trial and 
error procedure. The ANN structure developed in this research 
was the “MLP” with a back-propagation algorithm to predict 
runoff from the drainage basin, while the neuron number in the 
middle layer was 30. 

Input layer nodes that represent various input variables 
transmit input signals to unprocessed hidden layer nodes. These 
values are distributed to all intermediate layer nodes according to 
their connection weights (Wij, Wjk) between the input node and 
hidden nodes. Each node j receives incoming signals from each 
node i in the precedent layer. Each inlet signal (Xi) is associated 
with a weight (Wij). The effective inlet signal (Sj) to node j is the 
weighted sum of all the incoming signals passing through an 
activation function, and bj is the neuron threshold value (Eq. 1) 
[AICHOURI et al. 2015]. The activation function most commonly 
used in this kind of network to generate the outgoing signal (y) 
from the node is the tangent sigmoid (Eq. 2) which performance 
is better than the logistic sigmoid according to the results of 
REZAEIANZADEH et al. [2013].   

Sj ¼
Xn

i¼1

XiWij þ bj ð1Þ

f Sj
� �

¼
2

ð1þ e� 2SjÞ
� 1 ð2Þ

ANN training use Levenberg–Marquardt algorithm, since it 
is more efficient, faster and has been highly recommended as the 
supervised algorithm of the first-choice. It is also used for 
identical purposes [KASHANI et al. 2014]. 

All ANNs training and testing procedures were conducted 
using MATLAB software (R2018b). 

The ANNs were developed for each sub-basin, where the 
above-mentioned gauging stations are spread in the study region. 

Table 1. Hydrometric stations of Seybouse basin considered in 
this research 

Code Name River Area 
(km2) 

Available 
data period 

14-02-02 Moulin Rochefort Cherf 1 710  1981–1994 

14-03-01 Medjez-Amar II Moyenne 
Seybouse 1 105  1981–2002 

14-03-02 Bordj-Sabath Bouham-
dane 304  1981–2015 

14-05-01 Bouchegouf Melah 550  1981–1995 

14-06-01 Mirebek Seybouse 5 950  1981–1995 

14-06-02 Ain Berda Ressoul 102  1981–1997  

Source: own elaboration. 

Fig. 1. Location of the Seybouse basin; source: own elaboration based on 
data of Hydrographic Basin Agency (Fr. Agence Nationale des Ressources 
hydrauliques – ABH) 

Fig. 2. Schematic representation of the artificial neural network (ANN) 
model architecture; V1, V2, V3, …, Vn = input variables used for the 
ANN (single, two, three, …, n) input models; i, j = nodes; y = outgoing 
signal; Q = flow; source: own elaboration 
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Four different configurations were considered. The first consisted 
of a classical development (single input model), which is an ANN 
estimating the daily flow from a single relevant input variable 
exclusively related to the precipitated totals (ANN IP). The second 
type was always an ANN estimating the daily flow, but its input 
variables included precipitation and one of the meteorological 
variables (model with two-inputs), consequently four sub-models 
with two-inputs were developed (ANN IIP,ET, ANN IIP,T, ANN 
IIP,HUM, ANN IIP,Vw). The third type was an ANN that uses three 
input variables related to precipitation, temperature and humidity 
to estimate the daily flow (ANN IIIP,T,HUM). Finally, the last and 
fourth configuration consisted in developing an ANN with five 
input variables (precipitation, evapotranspiration, temperature, 
humidity and wind speed) to estimate the daily flow more 
accurately (ANN VP,ET,T,HUM, Vw). All parameters used in various 
ANN model training are converted to the same measurement 
unit.  

Before establishing these models, the database was split into 
three samples: 70% for training, 15% for cross-validation, and 
15% for ANNs testing. After several series of ANN training to 
find the network that corresponds to the smallest error and to the 
largest performance values, the final test is developed to confirm 
the selection of the network. It involves another database from the 
same station (which is not used in network’s training) and the 
calculation of the mean absolute error (MAE) by applying the 
chosen network (more details in section 4). Table 2 shows data 
sets from the different study stations used for ANN training, 
validation and testing, as well as the data used for the MAE test. 

Any data used in a model to estimate the flow of one of the 
above-mentioned hydrometric stations had to be divided in the 
same manner as the simulated station (as shown in Tab. 2). 

The modeling of different configurations is activated, once 
the data are entered and the network is created with its complete 
architecture (type, structure, function, layers, neurons). The 
models of different configurations described above, which are 
developed for all the stations regularly spread across the study 
area, are also developed for the entire basin. 

MODEL PERFORMANCE EVALUATION INDICES  

After developing the ANNs models, both statistical and graphic 
criteria were adopted to assess these models performance and 
select the most optimal desired model. Statistical indices included 

root mean square error (RMSE), mean absolute error (MAE), 
Nash–Sutcliffe efficiency (NSE), and Pearson correlation coeffi-
cient (R). They are given by:   

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 Ei � Oið Þ
2

n

s

ð3Þ

MAE ¼
1

n

Xn

i¼1

Ei � Oij j ð4Þ

NSE ¼ 1 �

Pn
1 Ei � Oið Þ

2

1
n

Pn
1 Oi � Ô
� �2

2

6
4

3

7
5 ð5Þ

R ¼
ffiffiffiffiffiffi
R2
p

and R2 ¼ 1 �

Pn
1 Oi � Eið Þ

2

Pn
1 Oi � Ô
� �2

ð6Þ

where: Ei and Oi are respectively, the estimated and observed 
value of flow, is the mean of Oi values and n is the total data sets 
number. 

The RMSE and MAE statistic measures are used to quantify 
the error between observed and estimated values. Pearson 
correlation coefficient R allows to measure the linear correlation 
between the observed and estimated flow values. The values range 
between −1 and +1; a negative value expresses the downhill linear 
relationship while a positive value expresses the uphill linear 
relationship. 

The NSE criterion is a very popular index to assess the 
predictive power of a hydrological model. It can be interpreted as 
the observed flow variance proportion described by the model, 
ranging from –∞ to 100% [NASH, SUTCLIFFE 1970]. If NSE = 100% 
the model is perfect, if NSE = 90% the model is excellent, if it 
varies between 80% and 90% the model is very good, and if it 
ranges from 60% to 80% the model is good, under 60% the model 
is bad, but if NSE < 50, the flow calculated by the model is worse 
than the simple average flow [CHERGUI 2019]. 

The graphical performance indicator gives better results if 
the alignment of the scatter plot approaches the y = x line at 45°, 
and desired (estimated) flow values overlap well with the 
observed flow values in both training and testing phases. 

RESULTS AND DISCUSSION  

To better appreciate performance and robustness of models 
developed, and therefore their predictive power, we present below 
the results in terms of various performance statistics of all ANNs 
models applied to the six studied stations. The first model, which 
consists of a classical development to estimate the daily flow, uses 
a single input (precipitation database as input). Different ANN 
scenarios have been formed by varying nodes in the middle layer. 
For each ANN scenario, the network has been trained. The 
training session was interrupted after each iteration to check the 
performance error (MSE) determined for training and testing 
phases. The training was finalized in the iteration that referred to 
the lowest network error calculated using the validation sample. 
The final ANN scenario was selected based on the maximum 

Table 2. Data subdivision for studied stations 

Station name Data period used for ANN 
training, validation and testing 

Data period 
used for MAE 

test 

Moulin Rochefort 1981–1985 and 1990–1994 1985–1990 

Medjez-Amar II 1981–1988 and 1995–2002 1988–1995 

Bordj-Sabath 1981–1992 and (2003–2015 1992–2003 

Bouchegouf 1981–1985 and 1990–1995 1985–1990 

Mirebek 1981–1985 and 1990–1995 1985–1990 

Ain Berda 1981–1986 and 1992–1997 1986–1992  

Source: own elaboration. 
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possible performance criteria that were found for a number of 
nodes in the intermediate layer equal to 30.  

Once the network is selected, a last check confirms the 
chosen scenario performance. It consists in applying the Network 
found, to another precipitation sample P recorded from the same 
station to define a new variable y: y = network (P’), then 
calculating the mean absolute error (MAE) between this variable 
and the flow sample Q: MAE = mean2 (abs (y – Q’)). This error 
should be minimal to confirm our selection and have a good 
network. The values of the most efficient ANN IP performance 
indicators for each of the six stations studied are shown in 
Table 3. According to the table, it can be seen that results 
obtained for Medjez-Amar II station are very satisfactory; a NSE 
criterion is larger than 88% and a very strong Pearson correlation 
coefficient varies from 0.91 to 0.96 in training, validation and 
testing phases of ANN IP. Even the MAE calculated between the 
two remaining samples of (P and Q) confirms the efficiency of 
this model with a minimal value of 0.74. However, this model 
(single input) results for the Ain Berda station are the worst 
compared with the other stations NSE < 60% and R = 0.77. The 
other stations results are satisfactory (a good NSE varies between 
66 and 83 and a very strong R between 0.81 to 0.91).  

The combination of another input parameter and precipita-
tion improves the performance of precedent neural network 
models for the stations, no matter which input parameter is used 
(evapotranspiration ET, temperature T, humidity HUM or wind 
velocity Vw). For the Moulin Rochefort station, the use of 
humidity (HUM) as the 2nd input variable provided good results 
(NSE = 68.5% and R = 0.82) compared with models which used 
evapotranspiration (ET), temperature (T) or wind velocity (Vw), 
while for the Bordj-Sabath station, the use of wind speed gave 
better results (NSE = 88% and R = 0.93). The temperature 
influence was the most dominant in the remaining stations. 
Hence, the use of this meteorological parameter at these stations 
showed more influence on the daily flow oscillations. The Ain 
Berda station, which provided unsatisfactory results in the 
previous model, was improved with the ANN IIP,T model with 
the NSE good (74%) and Pearson coefficient very strong (0.86). 
The improvement in the remaining stations was even better. 
Results are included in Table 4. 

Since the two-input models of ANN IIP,T and ANN IIP,HUM 

provided better results compared with the other stations, the 
combination of temperature and humidity with precipitation was 
used to form a network with three-inputs (ANN IIIP,T,HUM). 
Results showed improvements in the performance criteria for the 
stations of Moulin Rochefort (NSE = 70% and R = 0.83) 
and Bouchegouf (NSE = 84% and R = 0.91), while the remain-
ing stations showed a deterioration in their performance 
compared with the two-input models. Results are presented in 
Table 5. 

To optimize neural models for different stations, we decided 
to add precipitation and combine the parameter with four other 
meteorological parameters (ET, T, HUM and Vw) used in the 
preceding models. Thus, a network of five input variables was 
created. The ANN VP,ET,T,HUM,Vw model developed for each 
station was optimized and compared with the other models 
(single-input model ANN IP, two-input model ANN II and three- 
input model ANN IIIP,T,HUM). The results presented in Table 6 
indicate a noticeable improvement in neural network perfor-
mance. In fact, in most of the studied stations, we obtained 
a considerable increase in performance criteria compared with 
models discussed above (e.g. for Ain Berda station, the NSE 
criterion increased to 82% and Pearson coefficient to 0.9). Results 
obtained by this model were very satisfactory which proved its 
proper functioning. 

RANDRIANARIVONY et al. [2009] have shown that the more 
neural network input data are available, predictions are closer to 
real values and models are more efficient. 

A five-input model is not required to compare Tables 4 and 
6 for Medjez-Amar II and Bordj-Sabath stations. Consequently, 
development of two models with two-inputs (ANN IIP,T and 
ANN IIP,Vw) for the stations, respectively, is more than sufficient 
to achieve very good results. 

Since the ANN VP,ET,T,HUM,Vw model has shown very good 
results in most stations regarding statistical criteria, we have 
graphically presented these results for each station to confirm 
their performance.  

Figure 3 (AI, BI, CI, DI, EI, FI) shows a scatter plot 
alignment approaching the y = x line at 45° for the all the gauging 
stations.                     

Table 3. Statistical indices of the trained single input model (ANN IP) applied to the six hydrometric stations distributed in the 
Seybouse basin 

Performance criteria 

Gauging station  

Moulin 
Rochefort Medjez-Amar II Bordj-Sabath Bouchegouf Mirebek Ain Berda 

RPearson 

training 0.80 0.94 0.90 0.80 0.87 0.73 

validation 0.85 0.96 0.94 0.95 0.85 0.87 

test 0.78 0.91 0.93 0.93 0.71 0.86 

all 0.81 0.93 0.91 0.87 0.86 0.77    

NSE 66.1 88.2 83.2 77.1 74.7 59.9    

RMSE 0.05 0.40 0.52 0.51 0.16 1.04    

MAE 0.04 0.74 0.59 0.30 0.14 0.61  

Explanations: R = Pearson correlation coefficient, NSE = Nash–Sutcliffe efficiency, RMSE = root mean square error, MAE = mean absolute error. 
Source: own study. 
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Estimated and observed flows nearly overlapped during 
training, validation and testing for all the basin stations (Fig. 3 
AII, BII, CII, DII, EII, FII). 

These graphic performance indicators confirm the effec-
tiveness of the ANN VP,ET,T,HUM,Vw model.  

The flow modeling in six stations distributed throughout the 
basin, as well as the good results produced by the majority of the 
models, encouraged us to provide modeling for the whole basin. 
For this purpose, we gathered databases for all the stations to 
establish various models described above (model with single 
input, two-inputs, three-inputs and five-inputs). For the first 
model (single-input), the input variable was a grouping of 
precipitation data from the six stations used to estimate the daily 
flow for the entire basin. As explained above, before we started 

the ANN training, the set of data gathered (P and Q from the 
various stations) to form the entire sample was divided into three 
samples as follows: 70% for training, 15% for cross-validation, 
and 15% for ANNs testing. The other multiple input models were 
developed in the same manner, i.e. the meteorological database 
was used as input variables combined with precipitation, after 
collecting all data from the stations. Performance criteria for 
different models applied in the basin are presented in Table 7. 

The model with a single input provided good results (NSE = 
77% and R = 0.88). 

The second input parameter improved results achieved (no 
matter which meteorological variable was used, including ET, T, 
HUM and Vw. All of them provided almost very close results, 
with NSE from 77 to 79% and R from 0.88 to 0.89). 

Table 4. Statistical indices of the trained two-input model (ANN IIP,ET, ANN IIP,T, ANN IIP,HUM, ANN IIP,Vw) applied to the six 
hydrometric stations distributed in the Seybouse basin 

Performance criteria 

Gauging stations 

Moulin 
Rochefort 

Medjez- 
Amar II Bordj-Sabath Bouchegouf Mirebek Ain Berda 

ANN IIP,ET 

RPearson 

training 0.81 0.93 0.91 0.87 0.91 0.81 

validation 0.91 0.97 0.93 0.95 0.80 0.81 

test 0.77 0.96 0.96 0.90 0.72 0.90 

all 0.82 0.95 0.93 0.89 0.88 0.83    

NSE 67.4 90.7 86.5 80.5 78.9 69.2    

RMSE 0.04 0.35 0.46 0.47 0.15 0.91    

MAE 0.03 0.67 0.40 0.31 0.13 0.94 

ANN IIP,T 

RPearson 

training 0.83 0.95 0.92 0.86 0.91 0.84 

validation 0.83 0.92 0.94 0.95 0.87 0.88 

test 0.72 0.97 0.93 0.90 0.81 0.90 

all 0.82 0.95 0.93 0.89 0.90 0.86    

NSE 67.9 91.5 86.6 80.7 81.5 74.1    

RMSE 0.04 0.34 0.46 0.47 0.14 0.84    

MAE 0.03 0.76 0.18 0.22 0.12 0.53 

ANN IIP,HUM 

RPearson 

training 0.83 0.92 0.93 0.88 0.91 0.84 

validation 0.85 0.96 0.92 0.80 0.81 0.90 

test 0.71 0.98 0.90 0.92 0.74 0.90 

all 0.82 0.95 0.92 0.88 0.89 0.85    

NSE 68.5 91.0 86.0 77.6 80.6 73.6    

RMSE 0.04 0.35 0.47 0.51 0.14 0.85    

MAE 0.03 0.69 0.56 0.29 0.15 0.56 

ANN IIP,Vw 

RPearson 

training 0.82 0.93 0.93 0.83 0.89 0.80 

validation 0.77 0.90 0.96 0.95 0.72 0.87 

test 0.84 0.98 0.90 0.92 0.76 0.84 

all 0.81 0.95 0.93 0.88 0.87 0.83    

NSE 67.0 90.6 88.0 78.7 76.7 69.8    

RMSE 0.04 0.35 0.43 0.50 0.15 0.91    

MAE 0.04 0.85 0.68 0.33 0.14 0.87  

Explanations as in Tab. 3. 
Source: own study. 
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Table 5. Statistical indices of the trained three-input model (ANN IIIP,T,HUM) applied to the six hydrometric stations distributed in the 
Seybouse basin 

Performance criteria 

Gauging station 

Moulin 
Rochefort 

Medjez-Amar 
II Bordj-Sabath Bouchegouf Mirebek Ain Berda 

RPearson 

training 0.83 0.95 0.91 0.92 0.91 0.82 

validation 0.79 0.80 0.92 0.82 0.72 0.91 

test 0.86 0.83 0.89 0.94 0.80 0.91 

all 0.83 0.93 0.90 0.91 0.89 0.85    

NSE 70.0 88.2 81.4 84.0 80.5 72.0    

RMSE 0.04 0.40 0.54 0.43 0.14 0.87    

MAE 0.04 0.75 0.51 0.29 0.12 0.55  

Explanations as in Tab. 3. 
Source: own study.  

Table 6. Statistical indices of the trained five-input model (ANN VP,ET,T,HUM,Vw) applied to six hydrometric stations distributed in the 
Seybouse basin 

Performance criteria 
Gauging station 

Moulin Rochefort Medjez-Amar II Bordj-Sabath Bouchegouf Mirebek Ain Berda 

RPearson 

training 0.84 0.93 0.92 0.93 0.93 0.90 

validation 0.83 0.97 0.81 0.88 0.88 0.88 

test 0.89 0.97 0.95 0.93 0.87 0.88 

all 0.85 0.95 0.92 0.93 0.92 0.90    

NSE 72.9 90.8 85.0 86.6 85.1 82.0    

RMSE 0.04 0.35 0.49 0.39 0.12 0.70    

MAE 0.04 1.08 0.46 0.25 0.13 0.88  

Explanations as in Tab. 3. 
Source: own study.  

Table 7. Statistical indices of the models applied for the entire Seybouse basin 

Performance 
criteria 

Values for ANN model 

ANN IP ANN IIP,ET ANN IIP,T ANN IIP,HUM ANN IIP,Vw ANN IIIP,T,HUM 
ANN VP,ET,T, 

HUM,Vw 

RPearson 

training 0.86 0.87 0.87 0.90 0.88 0.88 0.91 

validation 0.92 0.90 0.90 0.86 0.89 0.91 0.87 

test 0.90 0.89 0.90 0.84 0.88 0.85 0.90 

all 0.88 0.88 0.88 0.89 0.88 0.88 0.91    

NSE 77.9 77.7 78.4 79.4 78.2 79.0 83.0    

RMSE 0.69 0.69 0.68 0.66 0.68 0.67 0.60    

MAE 0.49 0.47 0.46 0.47 0.46 0.46 0.49  

Explanations as for Tab. 3. 
Source: own study. 
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Fig. 3. Comparison of observed and estimated flow for the ANN V model in six gauging stations of the Seybouse basin; Qobs = observed flow, Qest = 
estimated flow; source: own study 
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The three-input model (combination of temperature and 
humidity with precipitation) also improved results compared 
with the single-input model. However, its results were very close 
to that of the two-input model. We decided to improve the 
efficiency of neural network models and used the five-input 
model. The model generated very satisfactory results regarding 
static performance criteria (NSE = 83% and Pearson correlation 
coefficient 0.9) and graphic performance indicators (estimated 
and observed flow values nearly overlapped, and the alignment of 
the scatter plot approached the y = x line at 45°) – Figures 4 and 5. 

CONCLUSIONS  

This article tests the practicability of artificial neural networks 
(ANNs) with different input configurations. The networks were 
used to simulate a rainfall-runoff model to better understand the 
hydrological behavior of the Seybouse basin. In fact, four main 
models were created for the six gauging stations spread within the 
study area. In order to estimate the daily flow, these models were 
optimized and compared with each other. The single-input model 
(precipitation) provided very satisfactory results at the Medjez- 
Amar II station, bad for Ain Berda, and acceptable results for the 
remaining stations.  

The addition of a second meteorological parameter to 
the set in the previous ANN model improved its performance 
in all the stations studied. For the Moulin Rochefort station, the 
use of humidity as 2nd input variable provided good results 
compared with models that used the other meteorological 
parameters, while for the Bordj-Sabath station, the model that 
combined wind speed with precipitation as input variables 
provided better results. However, the influence of temperature in 

this type of a model was the most dominant for the rest of the 
stations and the model provided good results. To enhance the 
results, the combination of two meteorological parameters 
(humidity and temperature) with precipitation was used as input 
to a new model. Indeed, this neural model improved the results 
only in Moulin Rochefort and Bouchegouf stations, while the 
remaining stations showed deteriorated performance compared 
with the two-input model. To improve previous results and to 
optimize the ANNs models, the use of all meteorological 
variables and their combination with precipitation seems 
necessary. The model with five inputs developed for various 
stations provided much better results than those obtained by 
previous models. The last part of the study was to apply four 
previous configurations to the whole basin. Finally, the five-input 
model showed very satisfactory results. 

ANN models have shown their power and capacity to 
simulate reasonably correct flows in semi-arid regions. The 
results and the comparative study of the different input 
configurations indicate that as much input variables are 
numerous, as more the model of ANN is efficient; therefore, 
the proposed ANN models are recommended for rainfall-runoff 
modeling, because of their simple structures, and their precision 
which helps us to solve problems related to water resources 
management. 
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