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Abstract: The article discusses the option for the application of the methodology for the solution of boundary value 
problems on the conformal mapping for the calculation of filtration process in the horizontal systematic drainage, 
provided that the drain is installed at a different depth. In particular, the case of methods combining fictitious areas and 
quasiconformal mappings for solving nonlinear boundary conditions problems for calculating filtration regimes in soils 
with free sections of boundaries (depression curves) and intervals of the “drainage” type. 

As an example, the authors designed a hydrodynamic flow grid, determined the values of the flows to the drain, 
established a section line and elicited other process characteristics. The algorithm for the numerical solution of model 
nonlinear boundary conditions problems of quasiconformal reflection in areas bounded by two equipotential lines and 
two flow lines, when for one of the sections, the boundary is an unknown (free) curve with fixed and free ends. 

The conducted numerical calculations prove that the problems and algorithms of their numerical solution, with 
a relatively small iterations number (k = 141) suggested in the paper, can be applied in the simulation of nonlinear 
filtration processes that arise in horizontal drainage systems. Total filtration flow obtained Q = 0.9 dm3∙s–1; flow for 
drains Q1 = 0.55 dm3∙s–1 and Q2 = 0.35 dm3∙s–1 are quite consistent with practically determined values.  
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INTRODUCTION 

In order to create necessary water conditions for agricultural 
production and to protect areas and settlements from surface 
water and groundwater flooding as a result of their dynamics 
(water level rise and fall), there is a need to solve a number of 
issues in the first place, the regulation of groundwater levels with 
the use of drainage systems, in particular, the placement of 
regulating drains at different depths (Fig. 1) [CASTRO-ORGAZ, 
HAGER 2017; ROKOCHINSKIY et al. 2019a; SATO, IWASA 2000; 
SMEDEMA 2011; TKACHUK et al. 2014; VAN DER MOLEN et al. 2007]. 
This problem is especially important for reclamation, where 
regulating drains are the major element of any drainage system 
[KLIMOV et al. 2019; ROKOCHINSKIY et al. 2019b; TKACHUK et al. 
2015]. 

Currently, numerical studies of the corresponding boundary 
value problems confirm that the method of inverse boundary 
value problems (conformal and quasiconformal mapping) is the 
most effective one. Specifically, BOMBA et al. [2007] examined the 
case of combining the fictitious domain method and quasicon-
formal mapping used for the solution of nonlinear boundary 
value problems in order to calculate filtration regimes in media 
with free boundary areas (depression curves) and “outflow” type 
spaces. Additionally, BOMBA et al. [2008] suggested an algorithm 
for a numerical solution of model nonlinear boundary value 
problems on the quasiconformal maps in the areas bounded by 
two equipotential lines and two-course (flow) lines, when one of 
the boundary parts is an unknown (free) curve with fixed and free 
ends. POLUBARINOVA-KOCHINA [1948] considered the stationary 
problem of flat-vertical stationary non-pressure stationary liquid 
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filtration to horizontal symmetric drainage when there is free 
groundwater surface (depression curve).  

In this paper, we introduce the application of a conformal 
mapping methodology for solving boundary value problems in 
order to calculate the filtration process in a horizontal drain, 
provided that the drains are installed at a different depth. 
Depending on the difference in the drain depth, there are 
different options of flow formation. For instance, the cases start 
with the complete flow symmetry, when the drains are installed at 
the same depth, then move along with a gradual shift of the 
boundary line towards the drains with a lower depth of 
installation (Fig. 2), and end with the case when the flow to the 
drain tends to zero. 

MATERIALS AND METHODS 

STATEMENT OF THE PROBLEM  

Let us consider the filtration process for the horizontal drainage 
under the conditions of installing a series of drain on two minor 
different depths. Considering the symmetry of the motion 
pattern, the research provides insight only into one fragment of 
such a system, namely, the curvilinear area Gz = ABB*B*C*C*CD 
(z = x + iy) (Fig. 2) limited by the flow lines BB* = {z: x = R1, R4 + 
+ 2R ≤ y ≤ R3}, B*C* = {z: x = R1, 0 ≤ y ≤ R4}, C*C* = {z: y = 0, 
0 ≤ x ≤ R1}, C*C = {z: x = 0, 0 ≤ y ≤ R2}, DA = {z: x = 0, R2 + 2R ≤ 
≤ y ≤ R3} and equipotential lines B*B* = {z: (x – R1)2 + (y – R4 – R)2 = 
= R2, R4 ≤ y ≤ R4 + 2R}, AB = {z: y = R3, 0 ≤ x ≤ R1}, CD = {z: x2 + 
+ (y – R2 – R)2 = R2, R2 ≤ y ≤ R2 + 2R}.  

Similarly to other researchers, like POLUBARINOVA-KOCHINA 

[1948], SAMARSKIY [1977], MARCHUK [1989] and BOMBA et al.                 

[2007; 2008; 2018], we shall describe the noted fragment with 
the equation of motion ~� ¼ kfgrad’ (Darcy’s law) and the 
continuity equation div~� ¼ 0, where ~� ¼ �x x; yð Þ þ i � �y x; yð Þ

� �

is filtration velocity, kf is filtration coefficient, bearing in mind 
that kf = kf1, if 0 ≤ x < R, R2 + R < y ≤ R3, R1 – R ≤ x < R1, 
otherwise kf = kf2, φ = φ(x, y) is 2–3 the potential at the point 
(x, y).  

Taking into account the research results revealed in BOMBA 

et al. [2007; 2008; 2018], putting a harmonic function ψ = ψ(x, y) 
(flow function), complex conjugate to φ = φ(x, y), and by the 
adoption of a number of boundary conditions, form a more 
general the corresponding conformal mapping problem ω = ω(z) 
= φ(x, y) + iψ(x, y) of the considered area Gz to the corresponding 
complex potential area Gω ={ω: φ* < φ < φ*, 0 < ψ < Q}  
(Q = Q1 + Q2 – initially unknown total filtration flow rate) looks 
as follows: 

kf
@�

@x
¼
@ 

@y
; kf

@�

@y
¼ �

@ 

@x
; ð1Þ

’jAB ¼ ’�; ’jCD ¼ ’
�; ’jB�B� ¼ ’

0;

 AD ¼ 0;  BB� ¼ Q2j ;  B�C�C�C ¼ Q1j :j
ð2Þ

We will formulate the conformal mapping problem z = z(ω) 
= x(φ, ψ) + iy(φ, ψ) of the area Gω on Gz, which is inverse to 
Equations (1)–(2), for unknown values of Q1 and Q2 in the 
following form: 

kf
@y

@ 
¼ @x

@’
;

kf
@x
@ 
¼ � @y

@’
;

’;  ð Þ 2 G!

(

ð3Þ

y ’�;  ð Þ ¼ R3; 0 � x � R1;

xð’�;  Þ
2
þ y ’�;  ð Þ � R2 � Rð Þ

2
¼ R2; R2 � y � R2 þ 2R;

x ’0;  
� �

� R1

� �2
þ y ’0;  

� �
� R4 � R

� �2
¼ R2; R4 � y � R4 þ 2R;

x ’;Q1ð Þ ¼ R1; 0 � y � R4;

x ’;Q2ð Þ ¼ R1; R4 þ 2R � y � R3;

y ’;Q1ð Þ ¼ 0; 0 � x � R1;

x ’;Q1ð Þ ¼ 0; 0 � y � R2;

x ’; 0ð Þ ¼ 0; R2 þ 2R � y � R3;

0 �  � Q;

0 �  � Q1;

Q1 �  � Q2;

’0 � ’ � ’�;

0 � ’ � ’0;

’0 � ’ � ’�;

’0 � ’ � ’�;

’� � ’ � ’
�;

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð4Þ

The transition from direct (Eqs. 1, 2) to inverse (Eqs. 3, 4) 
tasks has a number of advantages: the inverse task has 
a rectangular grid Gω (the direct task has a curvilinear grid Gz), 

which makes a hydrodynamic grid of motion, i.e. simultaneously 
with the construction of such a hydrodynamic grid of motion 
is determined by the total filtration flow and its components 

Fig. 1. Drainage systems with different depths of drainage: R = radius of 
the regulating drain; R1 = distance between the regulating drains; R2 = the 
distance from the deep laying drainage to the impermeable layer; R3 = the 
distance from the earth’s surface to the impermeable layer; R4 = the 
distance from the shallow drainage to the impermeable layer; R4 – R2 = 
the distance between the deep drainage level and shallow drainage level; 
kf1, kf2 = filtration coefficient drainage backfill and the main (unloose) soil 
mass; source: own elaboration 

Fig. 2. Graphic interpretation of the filtration process: a) filtration area 
Gz, b) the corresponding area of complex potential Gω; symbols used in 
the Fig. are explained in the text in p. 75–76; source: own elaboration 
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Q = Q1 + Q2, in this case, the nonlinearity generated by the 
transition from the direct to the inverse task is localised and does 
not significantly affect the problem calculation.  

The corresponding second-order equations in order to find 
the functions x = x(φ, ψ) and y = y(φ, ψ) in a divergent form are 
as follows: 

@

@’

1

kf

@x

@’

� �

þ
@

@ 
kf
@x

@ 

� �

¼ 0

@

@’

1

kf

@y

@’

� �

þ
@

@ 
kf
@y

@ 

� �

¼ 0

ð5Þ

ALGORITHM FOR THE NUMERICAL SOLUTION  
OF THE PROBLEM 

Numerical solutions to such problems were considered in the 
works of BOHAIENKO [2019], DIETHELM [2011], BERESLAVSKII [2014], 
GUBKINA et al. [2007]. To numerically plot the mapping of the 
rectangle Gω on a curved quadrangular area Gz (and comparing 
the corresponding points A, B, B*, B* etc. – see Fig. 2), following 
the method described by MARCHUK [1989], the difference 
analogue of Equations (5), boundary conditions (4) and boundary 
orthogonality conditions in the corresponding uniform grid 
domain shall be written  
G�
! ¼ ’i;  j

� ��
; ’i ¼ �’ � i; i ¼ 0;mþ 1;

 j ¼ � � j; j ¼ 0; nþ 1; � ¼ Q= nþ 1ð Þ; � ¼ Q= nþ 1ð Þ;

� ¼ �’=� ; m; n 2 Ng (where �’ and � – grid steps 
respectively by and ψ) as follows: 

� aiþ1;jþ1xiþ1;jþ1 � aiþ1;jþ1 þ ai;jþ1

� �
xi;jþ1 þ ai;jþ1xi� 1;jþ1

� �
þ

þ 1 � 2�ð Þ aiþ1;jxiþ1;j � aiþ1;j þ ai;j
� �

xi;j þ ai;jxi� 1;j

� �
þ

þ � aiþ1;j� 1xiþ1;j� 1 � aiþ1;j� 1 þ ai;j� 1

� �
xi;j� 1 þ ai;j� 1xi� 1;j� 1

� �
þ

þ �2 � biþ1;jþ1xiþ1;jþ1 � biþ1;jþ1 þ biþ1;j

� �
xiþ1;j þ biþ1;jxiþ1;j� 1

� �
þ

�

þ 1 � 2�ð Þ bi;jþ1xi;jþ1 � bi;jþ1 þ bi;j
� �

xi;j þ bi;jxi;j� 1

� �
þ

þ � bi� 1;jþ1xi� 1;jþ1 � bi� 1;jþ1 þ bi� 1;j

� �
xi� 1;j þ bi� 1;jxi� 1;j� 1

� ��
¼ 0;

� aiþ1;jþ1yiþ1;jþ1 � aiþ1;jþ1 þ ai;jþ1

� �
yi;jþ1 þ ai;jþ1yi� 1;jþ1

� �
þ

þ 1 � 2�ð Þ aiþ1;jyiþ1;j � aiþ1;j þ ai;j
� �

yi;j þ ai;jyi� 1;j

� �
þ

þ � aiþ1;j� 1yiþ1;j� 1 � aiþ1;j� 1 þ ai;j� 1

� �
yi;j� 1 þ ai;j� 1yi� 1;j� 1

� �
þ

þ �2 � biþ1;jþ1yiþ1;jþ1 � biþ1;jþ1 þ biþ1;j

� �
yiþ1;j þ biþ1;jyiþ1;j� 1

� �
þ

�

þ 1 � 2�ð Þ bi;jþ1yi;jþ1 � bi;jþ1 þ bi;j
� �

yi;j þ bi;jyi;j� 1

� �
þ

þ � bi� 1;jþ1yi� 1;jþ1 � bi� 1;jþ1 þ bi� 1;j

� �
yi� 1;j þ bi� 1;jyi� 1;j� 1

� ��
¼ 0;

i ¼ 1;m; j ¼ 1; n:

8
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ð6Þ

where: 
ai;j ¼

2
kf i;jþkf i� 1;j

, bi;j ¼
kf i;j� 1

þkf i;j
2

, kf iþ1
2
jþ1

2

¼
kf ijþkf iþ1j

þkf ijþ1
þkf iþ1jþ1

4
, 

xi;j ¼ x ’i;  j
� �

; yi;j ¼ y ’i;  j
� �

; kfi;j ¼ kf ’i;  j
� �

, σ [0, 0.5] is 
weighting factor, which affects the stability, accuracy, and rate of 
convergence of the difference scheme. 

Boundary conditions – functions that determine the 
physical area Gz – approximated by point-difference equations 
for x and y, which include boundary nodes: 

y0j ¼ R3; j ¼ 0; nþ 1;

xi0 ¼ 0; i ¼ 1;mþ 1;

xin0
¼ 0; i ¼ m � m1 þ 1;m;

yin0
¼ 0; i ¼ m � m1 � m2;m � m1;

xinþ1 ¼ R1; i ¼ 0;m0 � 1;

ðxm0j � R1Þ
2
þ ðym0j � R4 � RÞ

2
¼ R2; j ¼ n0 þ 1; nþ 1;

x2
mþ1j þ ðymþ1j � R2 � RÞ

2
¼ R2; j ¼ 0; n0;

xin0
¼ R1; i ¼ m0;m � m1 � m2 � 1:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð7Þ

� x1j þ x0j ¼ 0; j ¼ 0; n þ 1;

yin � yinþ1 ¼ 0; i ¼ 0;m0 � 1 ;

� xin0 þ xin0 � 1 ¼ 0; i ¼ m � m1 � m2;m � m1;

yin0
� yin0 � 1 ¼ 0; i ¼ m � m1 þ 1;m;

yin0
� yin0 � 1 ¼ 0; i ¼ m0;m � m1 � m2 � 1;

2xmþ1j ymj � ymþ1j

� �
� 2 ymþ1j � R2 � R
� �

xmj � xmþ1j

� �
¼ 0;

j ¼ 0; n0;

2 xm0j � R1

� �
ym0 � 1j � ym0j

� �
� 2 ym0j � R4 � R
� �

xm0 � 1j � xm0j

� �
¼ 0;

j ¼ n0 þ 1; nþ 1;

yi1 � yi0 ¼ 0; i ¼ 1;m:

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

ð8Þ

Conformal invariant γ of a curvilinear quadrilateral Gz (the 
ratio of the rectangle sides Gω) is unknown because the cost is 
unknown before) and is determined in the calculation process. The 
equation for the approximate calculating of this value is obtained 
on the basis of the condition of “conformal similarity in small” of 
the corresponding quadrilaterals (rectangles) of two areas 

� ¼
1

mþ 1ð Þ nþ 1ð Þ

Xm;n

i;j¼0

1

kf iþ1
2
;jþ1

2

�i;j ð9Þ

where:  

�i;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xiþ1;j � xi;jð Þ
2
þ yiþ1;j � yi;jð Þ

2

q

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xiþ1;jþ1 � xi;jþ1ð Þ
2
þ yiþ1;jþ1 � yi;jþ1ð Þ

2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi;jþ1 � xi;jð Þ
2
þ yi;jþ1 � yi;jð Þ

2

q

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xiþ1;jþ1 � xiþ1;jð Þ
2
þ yiþ1;jþ1 � yiþ1;jð Þ

2

q

We shall form the solution of the difference problem 
(Eq. (6) – Eq. (9)) following the schemes suggested by BOMBA et al. 
[2007; 2008; 2018]. We assign the quantities of m and n nodes 
partitioning the grid domain Gω, parameter ε, which characterises 
the approximation accuracy of the solution of the corresponding 
difference problem. We set the initial approximation of a series of 
variables: the initial approximation of the coordinates of the 
boundary nodes x 0ð Þ

0;j ; y
0ð Þ

0;j ; x
0ð Þ

mþ1;j; y
0ð Þ

mþ1;j,  x
0ð Þ

i;nþ1; y
0ð Þ

i;nþ1,  
x

0ð Þ

i;0 ; y
0ð Þ

i;0 (so that the Eqs. (7) are fulfilled) and the initial 
approximation of the coordinates of the internal nodes 
x

0ð Þ

i;j ; y
0ð Þ

i;j

� �
, i ¼ 1; m; j ¼ 1; n. We will use the equation (9) 

in order to define the initial approximation of a conformal 
invariant γ, moreover, in this case, we will use the newly given 
initial values of the internal nodes’ coordinates, i.e. 
� 0ð Þ ¼ � x

0ð Þ

i;j ; y
0ð Þ

i;j

� �
. Then, we will refine the following para-

meters:  
– internal nodes xi;j kþ1ð Þ; yi;j

kþ1ð Þ
� �

(k = 0, 1, … is the number 
of the iteration step) using the Gauss–Seidel method presented 
by SAMARSKIY [1977] according to the equations obtained by 
solving Equations (6) with respect to xi,j and yi,j;  

– γ values according to the equation (9) and value of filtration 
water flow rate Q according to the equation Q ¼ 1

�
nþ1
mþ1

;  
– coordinates of boundary nodes, for example, by solving a sys-

tem of nonlinear equations (7), (8).  
Next, we verify the fulfilment of the conditions for the 

termination of the computational process, for example, according 
to the following equations: 

max
xi;j ; yi;j2@Gz

xi;j
kþ1ð Þ � xi;j

kð Þ
�
�

�
�; yi;j

kþ1ð Þ � yi;j
kð Þ

�
�

�
�

� �
< ";

Q kþ1ð Þ � Q kð Þ
�
�

�
� < "; D kþ1ð Þ � D kð Þ

�
�

�
� < ";

ð10Þ

where: D ¼ 1
mþ1ð Þ nþ1ð Þ

Pm;n
i;j¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xiþ1;jþ1� xi;jð Þ
2
þ yiþ1;jþ1� yi;jð Þ

2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi;jþ1 � xiþ1;jð Þ
2
þ yi;jþ1 � yiþ1;jð Þ

2

q

is the average value of the ratio of the lengths of the 
curvilinear quadrilaterals’ diagonals within the grid domain. 
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If the conditions of equation (10) are not fulfilled, we return 
to the refinement of the internal nodes’ coordinates, etc. 
Otherwise, we calculate the deviation of the conformity of the 
resulting grid according to the Equation ε* = |1 – D|. Its value 
characterises the deviation of the resulting curvilinear quad-
rilaterals from the corresponding rectangles (since the ratio of the 
diagonals’ lengths in a rectangle is equal to one, whereas the 
existence of right angles is provided by orthogonality conditions). 

If, for instance, only one of the conditions of equation (10) 
is not fulfilled, we reconcile the ratio of accuracy ε* and the given 
number of partitioning steps m, n (first of all, by increasing the 
latter ones). However, there is a need to increase the degree of 
accuracy of the approximate solution (to reduce the deviation ε*), 
we increase the partition parameters m and n and solve the 
difference problem (Eq. (6) – Eq. (9)) again. Similarly, to BOMBA 

et al. [2007; 2008; 2018], we achieve the optimality of the relation 
between m and n by optimising the analogues of functional 
equations (for example, Riemann’s functional equation). The 
rationale for the constructed algorithm for “alternating fixation of 
the process and environment characteristics, the conformal 
parameter, internal and boundary nodes of the curvilinear area” 
is the same as in papers by BOMBA et al. [2007; 2008; 2018], with 
the use of ideas of block iterative methods described by SAMARSKIY 

[1977]. 

RESULTS AND DISCUSSION 

The proposed methodology for solving boundary value tasks on 
conformal mappings can apply for calculating filtration processes 
occurring within modular drainage systems (innovative spatial 
systems with different runoff depths), provided that the 
regulating drains are laid at different depths (Fig. 1). Wherein, 
as an example, the solution of the task was given. The 
corresponding numerical calculations were carried out, and the 
hydrodynamic grid was plotted (Fig. 3). A line for changing the 
filtration flow directions was established, determining the values 
of flows in the regulating drains located at different depths and 
other characteristics of filtration processes. 

As a result of computation under the described algorithm 
using the values of the following parameters: R = 0.05 m; 
R1 = 20 m; R2 = 1.0 m; R4 = 1.8 m; R3 = 3.0 m; R4 – R3 = 0.8 m; 
kf1 = 1.2 m∙d–1; kf2 = 0.8 m∙d–1 – the average permeability of the 
sandy loam in the loose condition and the condition of natural 
occurrence, respectively [KOZLOWSKI, LUDYNIA 2019] (see desig-
nations Fig. 1a) m = 30 m, n = 30 – the number of split nodes 
of the grid area; m1 = 0; m2 = 7; m3 = 3; φ* = 0, φ0 = R3 – R – R4; 
φ* = R3 – R – R2 (boundary conditions, see Fig. 1b); ε = 0.0001 
were found: total filtration flow Q = 0.9 dm3∙s–1; flow for drains 
Q1 = 0.55 dm3∙s–1 and Q2 = 0.35 dm3∙s–1 by k = 141 iterations, 
furthermore, we obtained a hydrodynamic flow grid (Fig. 3). 
In particular, in the Table 1 shows the dependences of drainage 
flow Q1 and Q2 from the changes of the drainage occurrence 
depth R4 and R2 (in this example parameters R4 = 1.8 m, R2 = 
1.0 m). 

The hydrodynamic grid (lines of flow and lines of equal 
pressure, Fig. 3) makes it possible to calculate the flow of water to 
the regulating drains located at different depths, and also to 
calculate the most important parameters for calculating these 
drains – the distance between them.                   

CONCLUSIONS  

The paper introduces the application of a conformal mapping 
methodology for solving boundary value problems in order to 
calculate the filtration process in a horizontal drain, provided that 
the drains are installed at a different depth. Concurrently, the 
researchers constructed an algorithm for the numerical solution 
of the problem, conducted corresponding numerical calculations, 
created a hydrodynamic flow grid, established a flow partition 
line, found the values of flows (migration) to drains, and other 
characteristics of the process.  

The conducted numerical calculations prove that the 
problems and algorithms of their numerical solution suggested 
in the paper can be applied in the simulation of nonlinear 
filtration processes that arise in horizontal drainage systems, as 
well as in the design of drainage facilities. 
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