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Abstract: The purpose of this study is to develop mathematical models based on artificial intelligence: Models based on 
the support vectors regression (SVR) for drought forecast in the Ansegmir watershed (Upper Moulouya, Morocco). 
This study focuses on the prediction of the temporal aspect of the two drought indices (standardized precipitation 
index – SPI and standardized precipitation-evapotranspiration index – SPEI) using six hydro-climatic variables relating 
to the period 1979–2013. 
The model SVR3-SPI: RBF, ε = 0.004, C = 20 and γ = 1.7 for the index SPI, and the model SVR3-SPEI: RBF ε = 0.004, 
C = 40 and γ = 0.167 for the SPEI index are significantly better in comparison to other models SVR1, SVR2 and SVR4. 
The SVR model for the SPI index gave a correlation coefficient of R = 0.92, MSE = 0.17 and MAE = 0.329 for the 
learning phase and R = 0.90, MSE = 0.18 and MAE = 0.313 for the testing phase. As for the SPEI index, the overlay is 
slightly poorer only in the case of the SPI index between the observed values and the predicted ones by the SVR model. 
It shows a very small gap between the observed and predicted values. The correlation coefficients R = 0.88 for the 
learning, R = 0.86 for testing remain higher and corresponding to a quadratic error average MSE = 0.21 and 
MAE = 0.351 for the learning and MSE = 0.21 and MAE = 0.350 for the testing phase. The prediction of drought by 
SVR model remain useful and would be extremely important for drought risk management.  

Keywords: Ansgemir watershed, drought, forecast, modelling, standardized precipitation index (SPI), standardized 
precipitation-evapotranspiration index (SPEI), support vectors regression (SVR) 

INTRODUCTION 

Morocco is a Mediterranean country facing a shortage of water 
resources due to arid and semi-arid conditions, exacerbated by 
global climate changes. Recurrent droughts have occurred in the 
last five decades, having a significant impact on both surface and 
ground water resources.  

Drought might be defined as a temporary natural disequi-
librium, hardly predictable, resulting in a decrease in the 
availability of water resources [PEREIRA et al. 2009]. When lasts 
for a long time, it affects the natural environment of a region. 

Upper Moulouya is ranked among the areas marked by 
a strong agricultural production. For several years, it has been 
susceptible of a rainfall deficiency. Indeed, the management of 
groundwater resources used by various economic sectors is 

a complicated task and subject to several factors. It is appositely 
important to better understand and predict drought, since it can 
have significant impacts on economic, agricultural, and environ-
mental activities as well as water stocks. 

Pursuant to these threats, it is important to have efficient 
tools to detect and follow up drought conditions. It is within this 
framework we have a research problem raised by the present 
study, a study which was initiated based on prerequisite 
motivations. 

A variety of measurement methods have been applied for 
predicting and patterning of the drought level. Among these 
methods, we can mention, for example, artificial neural network 
(ANN), support vectors regression (SVR), and wavelet neurons 
(WN). Support vectors regression models are mathematical 
models whose architecture is inspired by a biological neuron 
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network. Such networks are strongly adapted to patterning non- 
linear phenomena. The main advantage of these models versus 
other classical models is in their ability to solve problems which 
can be hardly formalized. The advantage of the SVR is that it 
could transfer a non-linear problem to a linear problem using the 
kernel function and be effective in solving a higher dimension 
problem. 

The purpose of this study is to monitor consequences of 
drought through climatic indices, such as standardized precipita-
tion index (SPI) and standardized precipitation-evaporation 
index (SPEI) by applying artificial intelligence techniques. The 
development of such models necessitates efficient modeling and 
reliable forecasts and simulations. 

Hence, the purpose of the present study is to predict the 
weather drought index for the Ansegmir watershed (Upper 
Moulouya, Morocco) using SPI and SPEI through the imple-
mentation of SVR data-driven models. As such, the current study 
proposes to apply new methods of drought forecasting based on 
artificial intelligence while using of SVR models. 

MATERIALS AND METHODS 

STUDY AREA 

The study is held in the Ansegmir valley situated in the watershed 
of upper Moulouya. From an administrative point of view, it is 
a part of the Midelt district (Dra-Tafilalt region), and hydraul-

ically it belongs to the watershed of upper Moulouya. In the 
north, it is bound by the province of Ifrane, Boulmane and Midelt 
in the east, Er-Rachidia and Beni Mellal in the south, and 
Khenifra in the west. It is wedged between the mountain ranges of 
the middle and high Atlas which geographical position is marked 
by hilly terrain with an altitude ranging from 1400 to 3000 m a.s.l. 
(Fig. 1). Its average annual temperature is 14.10°C with a daily 
minimum 6.02°C on average and daily average maximum of 
22.18°C during the study period (1978–1979 and 2012–2013). The 
climate is arid cold with a mountainous tendency. The rainfall 
pattern is marked by poor rainfall of 200 mm, combined with an 
extreme variability and irregularity. Brutal stormy rainfall brings 
upstream-eroded products, and sometimes, when climate condi-
tions are in its favor, the region experiences snow [CHAHBOUNE 

et al. 2014]. 
The Ombrothermic diagram of Bagnouls and Gaussen is 

based on average temperatures and rainfall over the period of 
1979–2013. The dry period, longer than the wet period, lasts for 
six months from April to October (Fig. 2). 

The upper Moulouya geology is composed of Paleozoic age 
sites, cross-linked by Hercynian granitic intrusions, metamorphic 
granite and shale outcropping in bottomholes of Zaida, Ahouli, to 
the east of Bou Mia and Kerrouchen to the west on which a dis-
matchedmesozoic coverage has recently formed [COMBE, SIMONOT 

1971; EMBERGER 1965]. In the occidental part of upper Moulouya, 
triassiclangs are generally made of marls, dolerits, red clay, and 
basalts laying in dismach on a Hercynian bedrock made up by 
metamorphic granite and shale (Fig. 3) [COMBE, SIMONOT 1971]. 

Fig. 1. Geographic location of the study area; source: own elaboration 
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DATA USED 

A monthly rainfall rate database has been set up for the 
computing of the SPEI index in the studied region. The database 
used covers a period of thirty-five years, from 1978 to 2013 
(Tab. 1). The majority of data are received from the Moulouya 
Basin Hydraulic Agency (Fr. Agence du Bassin Hydraulique de la 
Moulouya) and the other data are retrieved from the soil and 
water assessment tool (SWAT). 

DROUGHT INDEX 

Droughts can be quantified using multiple hydro-meteorological 
drought indices, of which the most popular are the Palmer index 
[PALMER 1965], standardised precipitation index [MCKEE et al. 
1993], index of the surface water supply [SHAFER, DEZMAN 1982], 
dryness index of flows [NALBANTIS, TSAKIRIS 2009], standard 
hydrological index [SHARMA, PANU 2010], standard index of 
maximum evapotranspiration [VICENTE-SERRANO et al. 2010], and 
agricultural drought benchmark index [WOLI et al. 2012].                                    

Multiple indices have been used to characterize hydrological 
droughts. These require, in general, a lot of data and calculations, 
unlike very simple and efficient meteorological drought indices, 
such as the standardized precipitation index (SPI) [NALBANTIS, 
TSAKIRIS 2009] and the standardized precipitation-evapotranspira-
tion index (SPEI) [VICENTE-SERRANO et al. 2010]. 

STANDARDISED PRECIPITATION INDEX (SPI) 

The standardized precipitation index is a very simple index 
created by MCKEE et al. [1993]. It is a benchmark recommended 
by the World Meteorological Organization in 2009 to facilitate 
drought monitoring and climate-related risk management. SPI is 
a standardized monthly indicator, which is based on the 
probability of precipitation (P) occurring regardless the time 
period considered. It is expressed mathematically as follows:  

SPI ¼
Pi � Pm

�
ð1Þ

where: Pi = rain per month or year, Pm = average rainfall of the 
series on the time scale considered; σ = standard deviation of the 
series on the considered time scale. 

Drought occurs when the SPI is consecutively negative and 
its value reaches an intensity of –1 or less, and ends when the SPI 
becomes positive.  

MCKEE et al. [1993] uses the classification system to define 
drought intensities resulting from the SPI. Based on the SPI 
values, severity of drought is classified as extremely wet for 
SPI ≥ 2.00, very wet for SPI ϵ <1.5; 1.99>, moderately wet for 
SPI ϵ <1.00; 1.49>, near normal for SPI ϵ <−0.99; 0.99>, 
moderately dry for SPI ϵ <−1.00; −1.49>, severely dry for 
SPI ϵ <−1.50; −1.99> and extremely dry for SPI ≤ −2.00. 

STANDARDISED PRECIPITATION-EVAPOTRANSPIRATION 
INDEX (SPEI) 

The SPEI is calculated using the same method in SPI. It is 
therefore also standardized and can be calculated at different time 
scales. This index is based on precipitation and potential 
evapotranspiration (PET), while the SPEI is based on the 
difference between precipitation (P) and potential evapotran-

Fig. 2. Bagnouls-Gaussen’s diagram of the study area; source: own 
elaboration 

Fig. 3. Extract from the geological map of Morocco (Moroccan geological 
service 1985, scale 1/1 000 000); source: own elaboration 

Table 1. The input and output variables considered for 
developing the forecasting model 

Variable – meteorological parameters Code Kind of 
variables 

Monthly maximum air temperature (°C) TMAX 

independent 

Monthly minimum air temperature (°C) TMIN 

Monthly average precipitation (mm) PRCP 
Monthly mean wind speed (m∙s–1) AWND 
Monthly average relative humidity (%) HR 
Monthly mean solar radiation (MJ∙m–2) TSUN 

Standardized precipitation index SPI 
dependent Standardized precipitation-evapotranspira-

tion index 
SPEI  

Source: own elaboration. 
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spiration (PET). Then, to this cumulative value of (P – PET) over 
months, the log-logistic law with three parameters is adjusted 
[BEGUERÍA et al. 2014]. The calculation of this index requires 
potential evapotranspiration (PET) as an input parameter. 

The data for the PET parameter are not available and must 
therefore be estimated using several methods, such as the 
Thornthwaite method [THORNTHWAITE 1948], Hargreaves method 
[HARGREAVES 1994] or the Penman method [PENMAN 1948]. Each 
of these methods has its own advantages and disadvantages in 
terms of data required.  

Recent studies, such as the study of MAVROMATIS [2007], 
have shown that the use of simple or complex methods to 
calculate the PET could produce similar results when a drought 
index is calculated. Thus, in this study, we adopt the simplest 
approach to calculate the PET [THORNTHWAITE 1948], which has 
the advantage of only requiring data on monthly mean 
temperature and the latitude of stations studied.  

In this study, we adopt the Thornthwaite method 
that requires the monthly mean temperature and the latitude 
of stations studied. The PET is calculated using following 
formula:  

PET ¼ 16K
10T

I

� �a

ð2Þ

where: T = monthly mean temperature (°C), I = heat index, which 
is calculated as the sum of 12 monthly index values according to 
(Eq. 3) computed based on mean monthly temperatures:  

i ¼
t

5

� �1:514

ð3Þ

where: a = a coefficient depending on I (Eq. 4):  

a ¼ 6:75 � 10� 7I3 � 7:71 � 10� 5I2 þ 1:79 � 10� 2I þ 0:49 ð4Þ

where: K = a correction coefficient derived as a function of the 
latitude and month. 

SUPPORT VECTOR REGRESSION (SVR) 

It is difficult to obtain operating models of complex processes and 
it requires skills and time. The use of wide-margin separators in 
the case of regression is a promising alternative to the modelling 
of these systems. 

Large margin separators are part of predictive methods that 
involve neural networks. This method was first introduced in 
1995 by VAPNIK [1995] and is based on the principle of the 
structural risk minimization. Theoretically, it minimizes the 
expected error of a learning machine and thus reduces the 
problem of overfitting. The SVR have recently been extended to 
the domain of regression problems [DIBIKE et al. 2001; LIONG, 
SIVAPRAGASAM 2002; VAPNIK [1999]. Let the set D be the set of 
N data pairs, having a data vector Xi as input data and the label Yi 

of this vector as output data, which can now take any real value. 
The goal of the SVR is to find a function f(x) that has at 

most ε deviation from the obtained target yi for all training data 
and meanwhile as flat as possible. In general, the approximating 
function of the SVR takes the linear form (Eq. 5):  

f xð Þ ¼ w’ xð Þ þ b ð5Þ

where: φ(x) represents high dimensional space characteristic 
which maps the input space vector x, w and b = coefficients to be 
estimated from input data by minimizing the regularized risk 
equation.  

Training the SVR means solving (Eq. 6):  

minimizing
1

2
kwk

2
þ C

Xn

i¼1
"i þ "

�
i

� �
ð6Þ

where: 1
2
wk k

2 represents the regularization term, C represents the 
error penalty feature controlling the trade-off between the error 
and regularization term, εi and εi* are positive and negative errors 
indicating upper and lower excess deviation [BRERETON, LIOYD 

2010]. 
The most important feature of the SVR is to establish data 

correlations by non-linear mapping. There are different types of 
kernels, such as linear function, sigmoid function, polynomial 
function and radial basis function (RBF). However, the ‘RBF’ 
kernel type has proven to be effective and it is used for the current 
analysis. In addition to the kernel type, the model is dependent on 
three different parameters: ε, C and γ which will be explained 
bellow [BELAYNEH et al. 2016; CHEVALIER et al. 2011; SMOLA, 
SCHÖLKOPF 2004]. 

STATISTICAL EVALUATION OF THE SVR MODEL 
PERFORMANCE 

The efficiency of the model in forecasting the monthly SPI and 
SPEI is statistically assessed using three different performance 
metrics for the output during the testing period. Statistical tests 
include mean square error (MSE), mean absolute error (MAE), 
and coefficient of correlation (R). Mathematical equations for 
calculating the efficiency of the model are as follows:  

MSE ¼
1

N

Xn

i¼1
SPIm � SPIesð Þ

� �2

ð7Þ

MAE ¼
1

N

Xn

i¼1
SPIm � SPIesj j ð8Þ

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �

Pn
i¼1 SPIm � SPIesð Þ

Pn
i¼1 SPIm � SPI
� �

s

ð9Þ

where: SPIm = measured value, SPIes = predicted (estimated) value 
and SPI is = measured values mean, and n = number of data 
points. 

RESULTS 

The total number of samples includes 420 observations covering 
relative data from the five stations shown in Figure 1 and studied 
over 35 years (1979–2013). This database includes six explanatory 
variables (independent), namely maximum temperature, mini-
mum temperature, precipitation, relative humidity, solar radia-
tion, wind and speed, and two dependent variables (to be 
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predicted) represented by the standardized precipitation index 
(SPI) and standardized precipitation-evapotranspiration index 
(SPEI) and drought indices. 

In the last step, model development ends with the model 
validation by examining the model’s performance on data that is 
not used in training. This is done through the performance 
criteria, the mean square error (MSE) and the mean absolute 
error (MAE). The model, which gives the best performance 
criteria, is chosen for drought forecasting. The data are divided 
into two parts: learning and testing (Tab. 2).  

In the implementation of the SVR for drought modelling 
through SPI and SPEI climatic indices, the learning and testing 
data are monthly weather parameter data. The multiple data 
(input/outputs/control variables) characterizing the process are 
retrieved from the program and broken down into two parts. The 
first part of 315 samples (75% of 420 samples) is used for training 
and building of the model. The remaining portion of 105 samples 
(25% of a total of 420) is used for testing. The obtaining of a fairly 
robust relationship between the input and output variables 
consists of choosing an input that is sufficiently rich in 
information. The frequency and amplitude of this input should 
be chosen to excite the system sufficiently to capture the input/ 
output relationship (which amounts to choosing the input so as to 
make the system observable). Indeed, this nonlinear system 
generally depends on the input. The input must enable to follow 
the trajectory and, at the same time, to be continuously exciting 
(or persistent excitation) to obtain a good identification that 
makes it possible to extract the dynamics of the system. Input 
variables in this system are summarized in Table 1. The values of 
the SPI and SPEI indices represent the output variable. 

The SVR model was developed using the online-SVR 
software created by [PARRELLA 2007]. The Online SVR is 
a technique used to build support vector machines for regression. 
The online-SVR partitions divide the database into two parts: one 
part for learning and the other for testing.  

There are different nuclei for regression: linear kernel, 
Gaussian and a radial kernel. In this study, the SVR model is used 
with the kernel of the non-linear radial base function. The 
database has been divided into two parts: 75% for learning, and 
25% for testing.  

As a result, each SVR model consisted of three parameters 
that were selected: γ, C and ε. The γ parameter is a constant that 
reduces the model space and controls the complexity of the 
solution, whereas C is a positive constant that corresponds to 
a capacity control parameter, and ε is the loss function that 
describes the regression vector [KISI, CIMEN 2011]. The C para-
meter is responsible for the balance between the simplicity of the 
model and the quantity of error, � is the difference between the 
desired result and the model result, and it is considered as the 

level of tolerated error of the model. If the difference is superior 
to the value of �, it will be corrected by the C parameter 
[BELAYNEH, ADAMOWSKI 2012; BELAYNEH et al. 2016]. 

Four regression models have been tested for each climatic 
index (SPI and SPEI) to predict the degree of drought: the SVR 
with a radial basis function (RBF), sigmoid, polynomial and linear 
kernel. The set of these models will be evaluated with a mean 
square error (MSE) and the correlation coefficient (R) between 
the predicted values with the model and the observed values. 

To select these three parameters (ε, C and γ), a large number 
of trials were carried out with different combinations for the four 
function kernels (linear, polynomial, sigmoid and RBF). To 
evaluate the performance of the proposed method, experiments 
were conducted to determine the relative significance of each 
independent parameter (input SVR) on this index (SPI and SPEI) 
(output). The mean squared error (MSE) and correlation 
coefficient (R) were used to evaluate differences between the 
observed and predicted values for SVR1, SVR2, SVR3 and SVR4. 

The results of correlations and the MSE coefficients 
obtained for each kernel functions are presented in Table 3. 
These results show that the experimental values and the output 
values of the SVR model are better linked to each other compared 
to that modelled by: SVR with an RBF kernel (Tab. 3). However, 
the RBF has proved to be effective and was used in this study. 

The forecasting results show that the SVR3-SPI model: RBF, 
ε = 0.004, C = 20 and γ = 1.7 for the SPI index, and the SVR3- 
SPEI model: RBF, ε = 0.004, C = 40 and γ = 0.167 for the SPEI 
index are sharply the best compared to the other models (SVR1, 
SVR2 and SVR4) (Tab. 3). 

The models are henceforth very accurate because the 
correlation coefficient which determines the adjustment quality 
of the model is very high (R must be the closest to 1) for the 
learning phase and the testing phase. 

In the case of prediction, SPI and SPEI indices are used 
during the learning and testing phases. The superposition is 
excellent between the observed and predicted values. (Fig. 7). The 

Table 2. Repartition of data from 1979 to 2013 used for the 
construction of support vector regression (SVR) models 

Start database: 420 observations 

Learning: 315 obs. Testing: 105 obs. 

75% of the data base 25% of the data base  

Source: own study. 

Table 3. Optimization parameters for the support vector 
regression (SVR) model in the test period 

SVR model Kernel 
function  ε C γ R MSE 

SVR1-SPI 
linear 

0.100 10 – 0.792 0.354 

SVR1-SPEI 0.100 10 – 0.799 0.317 

SVR2-SPI 
polynomial 

0.100 10 0.167 0.758 0.480 

SVR2-SPEI 0.100 10 0.167 0.704 0.510 

SVR3-SPI 
RBF 

0.004 20 1.70 0.92 0.17 

SVR3-SPEI 0.004 40 0.167 0.88 0.213 

SVR4-SPI 
sigmoid 

0.004 10 0.167 0.143 6.037 

SVR4-SPEI 0.004 10 0.167 0.145 2.927  

Explanations: SPI = standardized precipitation index, SPEI = standardized 
precipitation-evapotranspiration index, ε = loss function that describes 
the regression vector, C = positive constant that is a capacity control 
parameter, γ = constant that reduces the model space and controls the 
complexity of the solution, and bolded values = best values for R and 
MSE. 
Source: own study. 
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SVR model for the SPI index has given a correlation coefficient 
R = 0.920, MSE = 0.17 and MAE = 0.329 for the learning phase 
and R = 0.903, MSE = 0.18 and MAE = 0.313 for the testing phase 
(Fig. 8, Tab. 4). 

For the SPEI index, the overlay is slightly worse than in the 
case of the SPI index between the observed and predicted values 

in the SVR model. It shows a very small difference between the 
observed and predicted values (Fig. 7). The correlation coeffi-
cients R = 0.88 for the learning, R = 0.86 for the test remain high 
as well and correspond to MSE = 0.21 and MAE = 0.351 for the 
learning phase and MSE = 0.21 and MAE = 0.350 for the testing 
phase (Fig. 8, Tab. 4). 

Fig. 7. Observed and predicted standardized precipitation index (SPI) and standardized precipitation-evapotranspiration index (SPEI) values using the 
support vector regression model; source: own study 

Fig. 8. Correlation between the observed and predicted values of support vector regression model for the prediction of standardized precipitation- 
evapotranspiration index (SPEI) and standardized precipitation index (SPI) in the test period; source: own study 
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DISCUSSION 

The SVR models are used for the prediction of drought in the 
region of Upper Moulouya through the SPI and SPEI indices. 
They have demonstrated good performance in the prediction 
model (Tab. 5). 

The obtained correlation coefficients in the SVR model 
are close to 1 with 0.92 for the SPI and 0.88 for the SPEI, 
whereas the mean square errors established by the model are 
relatively very low MSE = 0.17 for the SPI and MSE = 0.22 for the 
SPEI. 

The SVR with RBF kernel had better performance than the 
three SVR models (linear, polynomial, and sigmoid kernel) in 
both the training and testing phase; this is compatible with 
scientific results of ZAHRAIE et al. [2011], LIMA et al. [2013], 
GHUMMAN et al. [2018] and TIAN et al. [2018]. 

In the case of the SVR models, the performances depend on 
the choice of the kernel and associated parameters. This was done 
using a trial-and-error approach which increased the calculation 
time due to the large size of the data set. The uncertainty between 
parameters increases the number of necessary trials to find the 
optimal model. In terms of time scales, previous multiple 
experiments showed that the longest time scales were better 
predicted than the shortest ones. This may be due to the strong 
correlation between the climatic indices and drought at the 
longest time scales [ACHOUR et al. 2020; ALI et al. 2017; BELYANEH, 
ADAMOWSKI 2012; DIKSHIT et al. 2020; EL IBRAHIMI, BAALI 2017]. 
Future works should focus on the development of complex ANN 
models and profound neuron networks, which provide a wide 
range of information on drought forecasting and its character-
istics in the region. 

CONCLUSIONS 

Drought is a serious and frequent natural risk, which inflicts 
serious damage to the agricultural production, economy, 
biodiversity and the environment. The recent increase in the 
drought impact is linked to the climatic change and its effects are 
expected to increase in the future. 

The objective of this study is to predict the temporal trends 
of drought in Upper Moulouya, located in the far North-East of 
Morocco. The region has witnessed several periods of drought 
during which its severity has been largely influenced by extreme 
variations of climatic factors.  

This study presents a support vector regression (SVR) 
technique and a model for predicting the weather drought index 
by using the standardized precipitation index (SPI) and 
standardized precipitation-evapotranspiration index (SPEI). One 
of the main characteristics of the SVR technique in this model is 
that instead of minimizing the observed training error, the SVR 
attempts to minimize the generalized error bound so as to achieve 
generalized performance. Four SVR models were investigated: the 
linear function (SVR1), polynomial function (SVR2), radial basis 
function (SVR3) and the sigmoid function (SVR4). The result has 
shown that the SVR3 (RBF) is better than the other models in 
predicting the weather drought index. 

The SVR models have revealed significantly better perform 
and in the prediction of the two drought indices (SPI and SPEI). 
The predictions provided very high correlation coefficients 
R = 0 .92 for the SPI and R = 0.89 for the SPEI and very low 
errors MSE = 0.01 and MAE = 0.07. This suggests that these 
models should be used for forecasting the degree of drought in 
the region. 

The results show that an improvement in predictive 
accuracy and capability of generalization can be achieved by the 
proposed approach. In addition, the results show that the SVR 
with Kernel function RBF can serve as a promising alternative to 
existing prediction models. 
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