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Abstract: Artificial neural network models (ANNs) were used in this study to predict reference evapotranspiration 
(ETo) using climatic data from the meteorological station at the test station in Kafr El-Sheikh Governorate as inputs 
and reference evaporation values computed using the Penman–Monteith (PM) equation. These datasets were used to 
train and test seven different ANN models that included different combinations of the five diurnal meteorological 
variables used in this study, namely, maximum and minimum air temperature (Tmax and Tmin), dew point temperature 
(Tdw), wind speed (u), and precipitation (P), how well artificial neural networks could predict ETo values. A feed- 
forward multi-layer artificial neural network was used as the optimization algorithm. Using the tansig transfer function, 
the final architected has a 6-5-1 structure with 6 neurons in the input layer, 5 neurons in the hidden layer, and 1 neuron 
in the output layer that corresponds to the reference evapotranspiration. The root mean square error (RMSE) of 
0.1295 mm∙day–1 and the correlation coefficient (r) of 0.996 are estimated by artificial neural network ETo models. 
When fewer inputs are used, ETo values are affected. When three separate variables were employed, the RMSE test 
values were 0.379 and 0.411 mm∙day–1 and r values of 0.971 and 0.966, respectively, and when two input variables were 
used, the RMSE test was 0.595 mm∙day–1 and the r of 0.927. The study found that including the time indicator as an 
input to all groups increases the prediction of ETo values significantly, and that including the rain factor has no effect 
on network performance. Then, using the Penman–Monteith method to estimate the missing variables by using the 
ETo calculator the normalised root mean squared error (NRMSE) reached about 30% to predict ETo if all data except 
temperature is calculated, while the NRMSE reached about of 13.6% when used ANN to predict ETo using variables of 
temperature only.  

Keywords: climate data, ETo calculator, feed-forward artificial neural networks, Penman–Monteith method, reference 
evaporation, root mean squared error 

INTRODUCTION 

Even if the data set just comprises the maximum (Tmax) and 
minimum (Tmin) air temperatures, reliable estimations of the ETo 

for ten days or per month can be obtained (FAO, 2009). Córdova 
et al. (2015) found that wind velocity data estimation has no 
significant effect on calculated ETo, but that if estimated the solar 
radiation data the calculations may be wrong by up to 24%; if 
relative humidity data is estimated, the error may reach 14%; and 
if all data except the estimated temperatures are estimated, the 
errors may be higher than 30% calendar. Artificial neural 

networks (ANN), which are mathematical models similar to 
biological neural networks, have attracted great interest in the 
domains of water science and technology in recent decades 
(Heddam, 2014). They can learn from examples, spot patterns in 
data, adjust solutions over time, and quickly process data the 
more input variables, the ANN model was more efficient 
(Yamina, Marouf and Amireche, 2020). The ability of the ANN 
to learn and generalize correlations in complex data sets is a key 
property that broadens its use (Wu, Dandy and Maier, 2014). 
Artificial neural networks (ANN) are effective tools for modelling 
nonlinear systems that require little input (Sudheer, Gosain and 
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Ramasastri, 2003). ANNs can be used for forecasting reference 
evapotranspiration with high reliability (Trajkovic, Todorovic 
and Stankovic, 2003). Different ANN models techniques have 
been employed by several researchers to estimate evapotranspira-
tion as a function of climate data, the multilayer perceptron 
(MLP) and radial basis functions neural networks (RBNN) 
techniques could be employed successfully in modelling the ETo 

process (Kisi, 2008). Antonopoulos and Antonopoulos (2017) and 
Alsumaiei (2020) it was stated that the MLP model can have 
a relatively good performance in predicting evaporation in arid 
and very arid regions and cascade correlation algorithm has the 
ability to estimate the daily ETo with reasonable accuracy 
(Diamantopoulou, Georgiou and Papamichail, 2011). Abbas 
(2017) it was stated that Feed-Forward Back Propagation (FFBP) 
with one hidden layer has a relatively good performance in 
predicting evaporation. ANNs were able to estimate ETo properly 
when wind speed and solar radiation were unavailable (Dehbo-
zorgi and Sepaskhah, 2012), and using only air temperature data 
as an input variable (Alves, De Souza Rolim and De Oliveira 
Aparecido, 2017). Trajkovic (2005) showed when radiation, 
relative humidity, and wind speed data are unavailable that an 
adaptive temperature-based RBF network can predict FAO-56 
PM ETo. The radial basis functions (RBF) network was viewed as 
emulating the FFBP in its performance and could be used 
effectively for ETo prediction and, it is easier to build and much 
faster to train. That the network outputs are very highly 
correlated to estimated ETo, especially when concerning all the 
climatic parameters (Awchi, 2008). The objectives of this study 
were: first, to study the possibilities of using FFBP networks to 
predict daily ETo values using climatic data from the meteor-
ological station at the test station in Kafr El-Sheikh Governorate 
as inputs to these networks and using the calculated ETo data 
FAO-56 PM as an output for these networks. Second, reducing 
the FFBP input to the minimum weather data requirements 
required for estimating ETo and its impact on acceptable 
accuracy. And third, comparing the ETo values of FAO-56 PM 
ETo computed under different levels of data availability using the 
ETo calculator model with the ETo computed in FFBP networks. 

MATERIALS AND METHODS 

The climate data used in this study consisted of daily observations 
of maximum (Tmax) and minimum (Tmin) air temperature (°C), 
dew point temperature (Tdw, °C), wind speed (u, m∙s–1) and 
precipitation (P, mm). All data was collected, for twenty years 
(from January 1, 2000 to December 31, 2020), from standard 
agricultural meteorological stations of the Agricultural Research 
Center in the tests station of Sakha, Kafer El-Shikh Governorate, 
Egypt, at latitude 31.09 N, and longitude 30.95 E, and mean 
altitude 2 m a.s.l. 

These data were used as input to the artificial neural 
network (ANN) and the output was ETo values were estimated 
using the Penman–Monteith (PM) method may be written as: 

ETo ¼
0:408� Rn � Gð Þ þ 900 �u2 es � eað Þ= T þ 273ð Þ

�þ � 1þ 0:34 u2ð Þ
ð1Þ

where: ETo = reference evapotranspiration (mm∙day–1), Rn = net 
radiation (MJ∙m–2∙day–1), G = soil heat flux density (MJ∙m–2∙day–1), 

T = mean daily air temperature at 2 m height (°C), u2 = wind 
speed at 2 m height (m∙s–1), es = saturation vapour pressure (kPa), 
ea = actual vapour pressure (kPa), es – ea = saturation vapour 
pressure deficit (kPa), Δ = slope of the vapour pressure curve. 

Which was proposed as the sole standard method for the 
computation of reference evapotranspiration (Trajkovic, Todoro-
vic and Stankovic, 2003). The estimated ETo values ware used as 
a standard for training and validation of various artificial neural 
network topologies. The Neural Network Toolbox (NN-Tool) in 
MATLAB (R2015a) is a tool for building multi-layer neural 
networks. In this study, the NN-Tool was used to train the 
network using the Feed-Forward Back Propagation (FFBP) 
algorithm. 

To increase network training speed and efficiency, the 
Levenberg–Marquardt (L–M) algorithm was used with an early 
stopping criterion, as well as gradient descent (train GDX) with 
momentum and adaptive learning rate. All of the data was 
separated into three sets for the criterion (70% training, 15% 
validation, and 15% test) (Coulibaly, Anctil and Bobee, 2000). 

Time, Tmin, Tmax, Tdw, u, and P are all nodes in the ANN 
model’s input layer, while ETo is represented by a single node in 
the output layer (calculated by the FAO-56 PM method). This 
study used one hidden layer with a varied number of hidden 
neurons to create networks because it can approximate any 
complex relationship. Trial and error were used to determine the 
number of neurons or nodes in the hidden layer, as well as model 
parameters. The number of hidden layer neurons ranged from 
two to five-step one. 1000, 1500, and 2000 epochs, learning rate 
from 0.001:0.005 step (0.001), and a momentum term of 0.9 were 
the model parameters that were fixed after numerous trials. In the 
hidden layer and output layer neurons, sigmoid and tanh 
activation functions were used, respectively. The optimal activa-
tion function was found through a trial-and-error procedure. The 
major selection criterion here was to improve the neural 
network’s accuracy. Fig. 1 shown the model architecture. 

Then, to investigate the effect of the time parameter, it was 
cancelled from input and the best model was trained without 
a time index. 

The study analysed multiple groups of climatic variables as 
inputs to ANN models to measure the degree of influence of ETo 

values with each of these inputs. Thus, the groups of inputs 
investigated in this study are: 
1) Tmax, Tmin, Tdw, u, P; 
2) Tmax, Tmin, Tdw, u; 
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Fig. 1. The optimal model architecture; ETo = reference evapotranspira-
tion; source: own elaboration 
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3) Tmax, Tmin, Tdw; 
4) Tmax, Tmin; 
5) Tmax, Tmin, u, P; 
6) Tmax, Tmin, Tdw, P; 
7) Tmax, Tmin, u 
and effect an additional input node representing the add time 
index (month number throughout the year) has been incorpor-
ated in each of the previously discussed input structures, and the 
networks have been re-trained while keeping the spread and 
a maximum number of nodes the same in all cases. 

Then compare the ANN results in cases 3, 4, and 7 with the 
ETo calculator software developed by the FAO’s Land and Water 
Division. Its main purpose is to calculate FAO-recommended 
reference evapotranspiration (ETo). 

Root mean square error (RMSE), normalised root mean 
square error (NRMSE), and Nash–Sutcliffe efficiency (NSE) were 
applied to assess and compare the accuracy of the methods and 
scenarios of the ANN models used and to identify the best way 
for predicting evapotranspiration. Performance indicators, correl-
ation coefficient (r), coefficient of determination (R2), and RMSE, 
were used for the validation period (Wang et al., 2012). The 
expressions for the statistical parameters indicated above are 
given below. 
• The correlation coefficient (r): the degree of linear connection 

and the direction between observed and predicted/simulated 
values is represented by this indicator; it is written as:  

r ¼

Pn
i¼1 hpi � �hp

� �
hoi � �ho
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 hpi � �hp
� �2

D E Pn
i¼1 hoi � �ho
� �2

D Eh ir ð2Þ

where: hoi = observed ETo at i the time, hpi = predicted ETo at i the 
time, n = total number of observations, �ho = mean of the observed 
ETo, �hp = mean of the predicted ETo. 

Better models tend to have r values close to 1. 
• The coefficient of determination (R2) is the square of Pearson’s 

correlation coefficient r and denotes the fraction of the overall 
variation in the observed data that the model can explain. The 
values of R2 range from 0 to 1. The closer the values are to 
1 indicating better agreement between observed and predicted/ 
simulated values (Willmott, 1984). It is expressed as:  

R2 ¼

Pn
i¼1 hpi � �hp

� �
hoi � �ho
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 hpi � �hp
� �2

D E Pn
i¼1 hoi � hoð Þ

2
D Eh ir

2

6
6
4

3

7
7
5

2

ð3Þ

The root mean square error (RMSE): is used to measure the 
difference between model values predicted and the observed 
actual values. 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 Xobs;i � Xmodel;i

� �2

n

s

ð4Þ

where: Xobs, i = the observation value, Xmodel, i = the predicted 
value. 
• The normalised root mean square error (NRMSE): relates the 

RMSE to the observed range of the variable. Thus, the overall 
range is resolved by the model. Can be observed as simulation 

(modelling) was excellent if it was smaller than 10% statistical 
indicator, good if between 10 and 20%, medium quality if it was 
between from 20 to 30%, and bad if it was greater than 30%.  

NRMSE ¼
RMSE

�O
ð5Þ

where: �O = the average observation value. 
• The Nash–Sutcliffe efficiency (NSE): is a normalised statistic 

that compares the residual variance to the observed data vari-
ance (Nash and Sutcliffe, 1970).  

NSE ¼ 1 �

Pn
i¼1 OBSi � SIMið Þ

2

Pn
i¼1 OBSi � OBS
� �2

ð6Þ

where: OBSi = the observation value, SIMi = the forecast value, 
and the OBS = the average observation value. 

RESULTS AND DISCUSSION 

This research aims to see how well FFBP networks can predict 
daily ETo values using five different climate variables. Because 
there are no clear standards for determining propagation values 
and the number of concealed nodes, the trial-and-error method is 
used to estimate them. A massive number of tests were carried 
out using various nodes and the combinations that produced the 
best network performance. Two statistical methods were used to 
evaluate performance: maximizing the correlation coefficient (r) 
and minimization of the root mean squared error (RMSE). Both 
the training and verification phases have their RMSE values 
displayed. 

The first experiment of the neural network model with 
gradient descent (GDX) (train algorithm) discovered that the 
architecture optimal model was (6-5-1), the transfer function of 
the hidden layer is sigmoid and the output layer was tansing, 2000 
epoch, and learning rate 0.005, while correlation coefficient 
(r = 0.994) and root mean squared error (RMSE train = 0.07, 
RMSE validation = 0.17) was shown as Table 1. 

Table 2 and Figure 2 showed the optimal ANN (6-5-1) when 
using the Levenberg–Marquardt (L–M) algorithm with 2000 
epoch, transfer function of hidden layer and output layer is 
tansing, whereas correlation coefficient (r = 0.996) and root mean 
squared error (RMSE train = 0.018 and RMSE validation = 0.14). 

Table 1. Training and validation of best FFBP networks due to 
gradient descent (GDX) 

Transfer function r RMSE 

hidden 
layer 

output 
layer train valida- 

tion test all 
data 

valida- 
tion train 

Sigmoid tansing 0.994 0.994 0.994 0.994 0.178 0.073 

Tansing tansing 0.992 0.992 0.992 0.992 0.200 0.066  

Explanations: r = correlation coefficient, RMSE = root mean squared 
error. 
Source: own study. 
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The second experiment of the neural network model (5-5-1) 
was without the time index to study the effect of time. The result 
was correlation coefficient (r = 0.96) and root mean squared error 
(RMSE train = 0.05, RMSE validation = 0.5). 

Then, using various combinations of these parameters as 
inputs, seven networks were created. The output of all networks 
provided is the daily ETo value evaluated using the PM method. 
Tables 3 and 4 listed these groups, which contained seven 
separate cases. To make the process of analysing network 
performance easier, these scenarios were grouped by the number 
of input parameters and the type of parameters. 

When a time index is added to the input, the r and RMSE 
values improve significantly when compared to the results of 
situations without a time index this corresponds to (Awchi, 2008). 
Although adding the additional parameter may not affect all cases 
equally, it is noticeable that the effect is stronger as more input 
parameters are given. The reduction in RMSE values for the 
validation phase owing to integrating the time index varied from 
29.8% (case 4) to 70.1% (case 1), while validation r values 
increased from 3.84% for case 1 to 10.4% for case 4. 

Three networks were chosen from the seven investigat- 
ed examples to investigate the impact of integrating daily rain- 
fall data as an input to the network as shown in Tables 3 

and 4. Networks 1, 6, and 5 were compared to networks 2, 3, and 
7 in terms of performance respectively. The findings demonstrate 
that incorporating rainfall data has no meaningful impact on 
network performance improvement. As a result, using rainfall 
data for ETo prediction is not recommended. Importantly, the 
time index parameter was employed to increase network 
performance. 

For all cases with the time index input, the scatterplots of 
the observed vs predict values of the reference evapotranspiration 
ETo of the FFBP with the L–M algorithm, R2 values ranging from 
0.992 in ANN 1 to 0.859 in ANN 4 and are displayed in Figure 3. 

Table 2. Training and validation of best FFBP networks due to 
Levenberg–Marquardt (L–M) 

Transfer function r RMSE  

hidden 
layer 

output 
layer train valida- 

tion test all 
data 

valida- 
tion train 

Sigmoid tansing 0.996 0.996 0.995 0.996 0.142 0.043 

Tansing tansing 0.997 0.996 0.996 0.996 0.135 0.018  

Explanations: r = correlation coefficient, RMSE = root mean squared 
error. 
Source: own study. 

Fig. 2. Comparison of the ETo predicted by the best FFBP networks (ANN) and observed values at: a) training, b) cross- 
validation, c) testing phases; source: own study 
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Then comparing the ETo values of FAO-56 PM ETo 

computed under different levels of data availability using the 
ETo calculator model with the ETo computed in FFBP networks. 

Only cases 2, 3, 4, and 7 from ANN were compared with the 
ETo calculator, which uses no rain quantity between its inputs to 
generate the reference evapotranspiration, to test the ETo 

calculation’s accuracy when compared to the standard FAO-56 
PM method. The previously mentioned NRMSE and NSE 
performance appraisal scales were used to evaluate ETo estimation 
methodologies. 

Table 5 refers to a statistical analysis comparing the 
performance of an artificial neural network (ANN) method and 
an ETo calculator method for calculating reference evapotran-
spiration (ETo) in cases where certain data are missing. The study 
found that when wind speed data are unavailable (case 3), Tdw 

data are unavailable (case 7), or only temperature data are 
available (case 4), the ANN method generally performed better 
than the ETo calculator method in terms of RMSE, NSE and the 
NRMSE. However, in case 2, the ETo calculator method 
performed better. 

Then comparing the ETo values of FAO-56 PM ETo 

computed under different levels of data availability using the 
ETo calculator model with the ETo computed in FFBP networks. 

Only cases 2, 3, 4, and 7 from ANN were compared with the 
ETo calculator, which uses no rain quantity between its inputs to 
generate the reference evapotranspiration. The study also found 
that as the number of missing variables increased, the accuracy of 
ETo calculations decreased for both methods. 

The study found that in case 2, when using an ANN with 
a time index input, the calculations were excellent. In case 3, 
when wind data was unavailable, the ANN method produced 
excellent calculations while the ETo calculator method produced 
good results. In case 7, when Tdw data was unavailable, the ANN 
method with a time index input performed excellently, while the 
ETo calculator method performed moderately with a potential 
error rate of 25% if dew point temperature data were estimated. 
In case 4, when only Tmax and Tmin data were available, the ANN 
method with a time index input performed well with an error rate 
of 13.6%, but the ETo calculator method performed poorly with 
an error rate of more than 30%. These results are similar to those 
found by Córdova et al. (2015). 

Table 3. Result of training and validation of best FFBP networks due to different inputs of climatic parameter without time index 

ANN no. Inputs 
r RMSE 

train validation test all data validation train 

1 Tmax, Tmin, Tdw, u, P 0.958 0.959 0.956 0.958 0.453 0.052 

2 Tmax, Tmin, Tdw, u 0.958 0.954 0.952 0.956 0.481 0.024 

3 Tmax, Tmin, Tdw 0.906 0.909 0.903 0.906 0.677 0.002 

4 Tmax, Tmin 0.852 0.838 0.860 0.851 0.857 0.001 

5 Tmax, Tmin, u, P 0.931 0.932 0.924 0.930 0.586 0.001 

6 Tmax, Tmin, Tdw, P 0.907 0.901 0.910 0.907 0.682 0.013 

7 Tmax, Tmin, u 0.928 0.932 0.923 0.928 0.588 0.001  

Explanations: r = correlation coefficient, RMSE = root mean squared error, Tmax = maximum temperature (°C), Tmin = minimum temperature (°C), 
Tdw = dew point temperature (°C), u = wind speed (m∙s–1), P = precipitation (mm). 
Source: own study.  

Table 4. Result of training and validation of best FFBP networks due to different inputs of climatic parameters including a monthly 
time index 

ANN no. Inputs 
r RMSE 

train validation test all validation train 

1 Mon, Tmax, Tmin, Tdw, u, P 0.9966 0.9962 0.9960 0.9964 0.1353 0.0183 

2 Mon, Tmax, Tmin, Tdw, u 0.9956 0.9962 0.9952 0.9956 0.1429 0.0002 

3 Mon, Tmax, Tmin, Tdw 0.9717 0.9689 0.9712 0.9712 0.3964 0.0618 

4 Mon, Tmax, Tmin 0.9288 0.9255 0.9219 0.9272 0.6007 0.0003 

5 Mon, Tmax, Tmin, u, P 0.9676 0.9607 0.9669 0.9665 0.4348 0.0003 

6 Mon, Tmax, Tmin, Tdw, P 0.9725 0.9715 0.9684 0.9717 0.3760 0.0164 

7 Mon, Tmax, Tmin, u 0.9662 0.9640 0.9662 0.9659 0.4061 0.0003  

Explanations: Mon = monthly time index, other symbols as in Tab. 3. 
Source: own study. 
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CONCLUSIONS 

This paper aims to investigate the potential of ANN in estimat- 
ing daily ETo in the Sakha district of Kafr El-Sheikh Governorate 
in Egypt. Networks using various input sets of available climatic 
data were trained using the FFBP network to predict daily 
ETo values using different climatic data. Analysis of the study 
results indicated that FFBP networks with the use of L–M 
training algorithms and sigmoid activation function can predict 
ETo values. ANN 1 model was presented with inputs of 
maximum and minimum air temperature, precipitation, wind 
speed and dew point temperature, and a single component 
hidden layer. Of five neurons the best architecture among 
the many that were tested. It gave the best ETo estimates 
among the input groups tried in the study. The best results are 

Fig. 3. Comparison of daily reference evapotranspiration 
(ETo) estimations by the FAO Penman–Monteith equation 
(FAO ETo) and ANN models: a) ANN 1, b) ANN 2, 
c) ANN 3, d) ANN 4, e) ANN 5, f) ANN 6, g) ANN 7; 
source: own study 

Table 5. The performance indices of artificial neural network 
(ANN) and the ETo calculator method for the cases of missing 
variables were analysed 

Case  
no. 

ANN with time index ETo calculator 

RMSE NRMSE (%) NSE RMSE NRMSE (%) NSE 

2 0.148 3.4 0.991 0.093 2.1 0.997 

3 0.379 8.6 0.943 0.873 19.9 0.698 

4 0.595 13.6 0.86 1.345 30.6 0.284 

7 0.411 9.4 0.933 1.109 25.2 0.513  

Explanations: RMSE = root mean square error, NRMSE = normalised root 
mean square error, NSE = Nash–Sutcliffe efficiency. 
Source: own study. 
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obtained when all studied climatic parameters are included 
as inputs to the network. Using only air temperature inputs 
gave bad ratings. In addition, no significant improvement in 
network performance was observed when precipitation was 
incorporated as an input to the network. It was seen that there 
is a valuable effect of including the time index of the inputs, 
which resulted in a clear improvement in all studied cases. 
Therefore, the use of time indicators is highly recommended 
for future research work. The results also showed that using 
FFBP networks for both maximum and minimum temperature 
data is better than using ETo calculator to predict ETo at the 
study site. 

From a practical point of view, ANN models can be 
considered more suitable to serve as a tool for ETo estimation 
when the input climate variables are insufficient. 
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