
Hybrid machine learning for flood prediction:  
comparing CHIRPS satellite and ground station data 

Agustina Rachmawardani1), 2) , Budhy Kurniawan*1) , Sastra Kusuma Wijaya1) ,  
Ardhasena Sopaheluwakan3), 4) , Marzuki Sinambela2) 

1) Universitas Indonesia, Faculty of Mathematics and Natural Sciences, Department of Physics,  
Building F, Pondok Cina, Beji District, Depok City 16424, Indonesia 

2) State College of Meteorology, Climatology and Geophysics, Meteorology Street, No 5, Tanah Tinggi Sub-district,  
Tangerang District, Tangerang City, Banten 15119, Indonesia 

3) Indonesia’s Meteorological, Climatological, and Geophysical Agency, Angkasa 1 No 2 street, Kemayoran,  
Central Jakarta, DKI Jakarta 10720, Indonesia 

4) World Meteorological Organization (WMO), 7bis, avenue de la Paix, CH-1211 Geneva 2, Switzerland 

* Corresponding author  

RECEIVED 29.09.2024 ACCEPTED 15.11.2024 AVAILABLE ONLINE 24.02.2025 

Abstract: Flooding in Jakarta is a multifaceted issue influenced by a combination of geographical, social, economic, and 
environmental factors. This study focuses on predicting floods by comparing automatic rain gauge (ARG) ground 
station data and Climate Hazards Group InfraRed Precipitation (CHIRPS) satellite data using the Adaptive Neurofuzzy 
Inference System (ANFIS) integrated with principal component analysis (PCA). The dataset includes precipitation 
measurements from both ARG and CHIRPS along with water level data spanning from 2014 to 2020. ARG provides 
precise local rainfall data, while CHIRPS offers extensive regional precipitation coverage. To enhance data quality, 
preprocessing techniques such as mean imputation, data normalisation, and the interquartile range (IQR) method were 
employed. The ANFIS-PCA model, which integrates fuzzy logic and neural network training, was applied using an 
80:20 split for training and validation. When trained with ARG ground station data and water level measurements, the 
ANFIS-PCA model demonstrated superior accuracy, achieving a root mean square error (RMSE) of 0.13, mean 
absolute error (MAE) of 0.12, and R2 of 0.82. In contrast, the ANFIS model without PCA yielded higher errors, with 
RMSE 6.3, MAE 6.2, and R2 0.74. Training with CHIRPS satellite data resulted in significantly higher errors (RMSE 
30.14, MAE 24.05, R2 0.42). These findings underscore the superiority of ground-based measurements for flood 
prediction, given the reduced precision and higher susceptibility to errors in satellite-derived data. While CHIRPS 
satellite data offers broader spatial coverage, its limitation in precision and higher susceptibility to errors reduce its 
effectiveness for accurate flood prediction.  
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INTRODUCTION 

Flooding is one of the most frequent natural disasters in Asia. 
Indonesia, particularly the state capital of Jakarta, is one of the 
Asian countries that experiences the highest flood impacts. 
Jakarta has endured multiple significant floods in the twenty-first 
century, including in 2002, 2007, 2013, 2015, and 2020. The 

floods of 2007 were considered a national disaster, resulting in 
losses of USD 565 mln (Bennett et al., 2023). Severe precipitation 
in Jakarta and nearby urban areas from 17–19 January 2013 
resulted in extensive flooding, leading to the destruction of 98,000 
residences, displacement of 40,000 individuals, and losing 20 lives. 
The estimated total cost of the damage amounts to USD 775 mln 
(Priyambodoho et al., 2021). Urban areas are particularly 
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vulnerable to natural disasters as they affect buildings and 
essential infrastructure, such as bridges, drainage systems, and 
power stations (Hassan, Joseph and Abubakar, 2024). Addition-
ally, flooding also leads to lower productivity and fewer business 
opportunities. 

Flood forecasting has traditionally relied on data from 
ground-based meteorological stations, which provide accurate 
and localized precipitation measurements. However, a major 
limitation of ground station data is its limited spatial coverage, 
particularly in rural areas or regions lacking a comprehensive 
monitoring network. In many developing countries, ground 
stations are sparsely distributed, leading to substantial gaps in the 
data required for reliable flood forecasting (Helmi et al., 2024). To 
address these limitations, satellite-based precipitation data has 
become an increasingly valuable tool for flood prediction. Among 
the most widely used satellite datasets is CHIRPS, which 
integrates satellite imagery with terrestrial observations to 
produce near-global precipitation estimates at a 0.05° (~5 km) 
resolution, ensuring extensive spatial coverage. CHIRPS is 
particularly beneficial in regions with limited or nonexistent 
ground station data (Du et al., 2024). 

Machine learning (ML) provides a robust approach to flood 
prediction by integrating multiple data sources (Amiri et al., 
2024). These models efficiently process large volumes of diverse 
data, identifying complex patterns that traditional statistical 
approaches may miss. ML models are particularly effective for 
short-term flood prediction, as they can be trained on historical 
data and utilized for real-time predictions based on current 
conditions (Szeląg et al., 2024). There are several examples 
demonstrating how machine learning is applied to mitigate 
flooding. For instance, ML models trained on historical data, such 
as rainfall, river flow, and satellite imagery, can provide early 
warnings, thereby enhancing preparedness and response efforts 
(Rashidi Shikhteymour et al., 2023). Furthermore, ML algorithms 
analyse real-time data from sensors and satellite imagery to 
monitor floods closely, facilitating early detection and accelerat-
ing response efforts (Antzoulatos et al., 2022). Additionally, these 
models assist in identifying flood-prone areas, informing 
decision-making processes for risk management (Dong et al., 
2021). Research conducted by Rudra and Sarkar (2023) elucidates 
the application of ML in modelling intricate hydrological systems, 
specifically floods using algorithms such as artificial neural 
networks (ANN) (Santos et al., 2023), neuro-fuzzy (Bensaid et al., 
2024), multiple linear regression (MLR) (Youssef et al., 2023), and 
regression vector support (SVR) (Azi et al., 2024). Furthermore, 
incorporating hybridization with other machine learning meth-
ods, soft computing approaches, numerical simulations, and/or 
physical models holds significant potential for improving the 
performance of machine learning (Al-Areeq et al., 2024). 

Recent research has employed an Adaptive Neuro Fuzzy 
Inference System (ANFIS) algorithm for their modelling 
purposes. Samantaray et al. (2023) developed a novel model for 
predicting river flood discharge using an improved ANFIS 
combined with a hybrid optimization approach that integrates 
particle swarm optimization (PSO) and slime mould algorithm 
(SMA). Similarly, Ahmadi and Moradinia (2024) used Hybrid 
ANFIS-ACO Model, which combines the Adaptive Neuro-Fuzzy 
Inference System (ANFIS) with ant colony optimisation (ACO) to 
enhance the accuracy of flood hydrograph estimation. This hybrid 
approach aims to improve flood forecasting, particularly in 

regions highly vulnerable to flooding. Navale and Mhaske, (2023) 
concluded that the ANFIS model significantly outperforms the 
ANN model in predicting groundwater levels in the Prav’s 
superior accuracy and better handling of complex, nonlinear 
relationships. Sahoo, Samantaray, and Paul (2021) demonstrated 
that hybrid models, such as ANFIS-PSO and ANFIS-SMA, 
significantly outperform standalone models like SVM and ANN. 
Islam et al. (2023) employed ANN, fuzzy logic (FL), and random 
forest (RF, both as standalone models and in hybrid ensemble 
forms. These models were used to predict flood susceptibility by 
processing remote sensing data and geographical factors. 
Technological advances in remote sensing have significantly 
contributed to various aspects of flood management. More 
precise and real-time flood detection enables faster and more 
effective warning system (Rachmawardani et al., 2022). 

This research focuses on designing a flood early warning 
system that employs an ANFIS-based hybrid Machine Learning 
method to mitigate flood disasters. An effective method to 
address flooding is constructing an advanced early warning 
system that promptly alerts individuals about impending 
disasters. The primary goal of this early warning system is to 
reduce flood damage by providing timely and accurate informa-
tion. Flood early warning systems aim to enhance Indonesia’s 
ability to withstand disasters and encourage sustainable develop-
ment by providing necessary preparations and flood mitigation 
measures. 

MATERIALS AND METHODS 

STUDY AREA 

The Upper Ciliwung River Basin plays a crucial role in 
contributing to flooding in Jakarta, primarily due to its complex 
topography and geographic characteristics. This basin serves as 
a major source of precipitation runoff from the surrounding 
mountainous areas, which flows into Jakarta through the 
Ciliwung River, one of the city’s primary watercourses. However, 
the river’s limited capacity to manage large volumes of water 
during intense rainfall increases the likelihood of flooding in 
urban Jakarta (Zein, Anggraheni and Yahya, 2023). Furthermore, 
Jakarta’s location in a low-lying and predominantly flat basin 
exacerbates its vulnerability to flooding. 

The Ciliwung Upper River Flow Area (Fig. 1) is located in 
two districts of West Java Province: Bogor District and Bogor City. 
It is one of 13 watersheds in critical condition due to land use 
changes (Saridewi and Fauzi, 2019). The total area of watersheds 
in the Upper Ciliwung from upstream to downstream is 
approximately 36.839 ha, while the Upper Ciliwung Watershed has 
an area of 15.101 ha. Consequently, the Ciliwung watersheds in 
upstream areas occupy 40.18% of the total surface area of the 
Ciliwung DAS. The location coordinates are 106°49'40"– 
107°00'15" E and 6°38'15"–6°46'05" S (Indriastuti, 2016). 

DATA SOURCE 

The initial dataset for flood prediction research comprises water 
level data from the Ciliwung Watershed. This dataset includes 
water level measurements from the Katulampa station, spanning 
the period from 2014 to 2020. The data is accessible through the 

© 2025. The Authors. Published by Polish Academy of Sciences (PAN) and Institute of Technology and Life Sciences – National Research Institute (ITP – PIB). 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) 

88 Agustina Rachmawardani, Budhy Kurniawan, Sastra Kusuma Wijaya, Ardhasena Sopaheluwakan, Marzuki Sinambela 



official website https://pantaubanjir.jakarta.go.id/, maintained by 
the Jakarta government. The “Pantau Banjir Jakarta” platform 
provides real-time monitoring and information on flood condi-
tions in the city. Among its key features is the real-time tracking 
of water levels. 

Rainfall data from automatic rain gauge (ARG) ground 
stations, specifically from the Katulampa Bogor area, were collected 
for the Upper Ciliwung River Basin between 2014 and 2020. These 
data were sourced from the BMKG website (awscenter@bmkg.go. 
id, BMKG). In addition to ground station data, satellite rainfall 
data were obtained from the Climate Hazards Group InfraRed 
Precipitation with Station (CHIRPS) satellite for the same period. 
The CHIRPS dataset utilises advanced interpolation techniques 
and high-resolution, long-term precipitation estimates derived 
from infrared cold cloud duration (CCD) measurements (Sulugo-
du and Deka, 2019). The CHIRPS dataset was retrieved from the 
Climate Engine platform, an online tool designed to access, 
visualise, and analyse high-resolution climate and environmental 

data (Wang et al., 2021). The dataset about flood events in the 
Jakarta region from 2014 to 2020 is identified as the output data for 
this analysis and is available through the Jakarta Open Data portal. 
This project, implemented by the Jakarta government, aims to 
improve public access to various urban datasets. A notable example 
of such a dataset is the annual flood incident recap, which offers 
comprehensive information on flood occurrences in Jakarta. The 
dataset includes many data points, such as the frequency of flood 
incidents, the impacted regions, and other relevant statistics for 
each year. 

PRE-EVALUATION OF INPUT DATA 

Daily rainfall data collected from the ARG station at Katulampa 
and CHIRPS satellite data, covering the period from 2014 to 2020 
are presented in Figure 2. This time series captures the variation 
in daily precipitation levels, with noticeable fluctuations reflecting 
seasonal rainfall patterns. Peaks in the graph indicate days with 

Fig. 1. Geographic location of flood prediction modelling; source: own elaboration based on: CHIRPS spatial data and 
Indonesian topographic maps 

Fig. 2. Daily rainfall data from: a) automatic rain gauge (ARG Katulampa), b) Climate Hazards Group InfraRed 
Precipitation (CHIRPS); source: own elaboration 
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high rainfall intensity, while lower values represent dry or low- 
rainfall periods. 

Both the ARG Katulampa and CHIRPS datasets are 
aggregated at a daily time step, with rainfall measured in 
millimetres per day. 

Table 1 presents the accumulated rainfall for ARG 
Katulampa and CHIRPS datasets during the training period 
(2014–2018) and the validation period (2018–2020). The table 
shows that CHIRPS consistently records higher rainfall totals 
than ARG Katulampa for both periods. During the training 
period, the total rainfall measured by CHIRPS was 19,702.22 mm, 
compared to 15,852.4 mm recorded by ARG, representing 
approximately 24% higher rainfall. Similarly, in the validation 
period, CHIRPS recorded 10,878.45 mm, while ARG recorded 
8,849.9 mm, indicating a difference of 23%. This difference 
reflects the spatial nature of CHIRPS, which captures rainfall over 
a larger area, including upstream and surrounding regions, 
whereas ARG Katulampa records rainfall at a single point. The 
results in Table 1 indicate that while both datasets follow similar 
trends, CHIRPS consistently captures higher cumulative values, 
likely due to its broader spatial coverage. 

STUDY METHODS 

The methodology of this study is structured into several essential 
phases: data collection, preprocessing, hyperparameter tuning, 
developing models, and performance evaluation. Each phase is 
critical in ensuring the precision and robustness of the flood 
prediction model. The subsequent sections provide a comprehen-
sive explanation of the processes involved in each phase (Fig. 3). 

Data collection 

The first phase, data collection, involves acquiring key input 
variables influencing flood events. The principal inputs originate 
from two essential sources. The first is ground station data from 
the Katulampa water level and a rain gauge station, providing 
localised hydrological measurements essential for understanding 
real-time water levels. The second source includes additional 
ground-based Katulampa water level data and CHIRPS, which 
offers comprehensive precipitation data, particularly in areas 
lacking sufficient ground measurements. CHIRPS data includes 
temporal resolutions at the daily, pentad, and monthly levels 
(Shahid et al., 2021). The flood events recorded between 2014 and 
2020 serve as the output for the analysis. 

Preprocessing 

The next step is data preprocessing, which is essential for 
preparing raw data for analysis and modelling. This process 
involves several methods, such as missing value imputation, data 
normalisation, and handling outliers, to clean and transform the 
data, ensuring that data is appropriate for machine learning 
algorithms. Missing values in datasets are a common problem 
that can be solved via missing value imputation using the dataset 
mean (Gabr, Helmy and Elzanfaly, 2023). The equation for mean 
imputation involves calculating the mean of the observed (non- 
missing) values in the dataset and then replacing each missing 
value with this calculated mean (see Equation 1). 
� The mean of observed value: 

�x ¼
1

N � M

XN

j¼1

xj
� �

ð1Þ

where: N = the total number of observations in the dataset, 
M = the number of missing values. 

The sum 
PN

j¼1

xj
� �

includes only the non-missing values. 
� Impute the missing values: 

xi ¼
xi; if xi is not missing

�x if xi is missing

�

ð2Þ

The formula for mean imputation involves calculating the 
mean �x of all non-missing values and then substituting each 

Table 1. Accumulated rainfall for automatic rain gauge (ARG) 
Katulampa and Climate Hazards Group InfraRed Precipitation 
(CHIRPS) during training and validation periods 

Period ARG Katulampa CHIRPS 

Training period (2014–2018) 15852.4 19702.22 

Validation period (2018–2020) 8849.9 10878.45  

Source: own elaboration. 

Fig. 3. The flowchart of the research; CHIRPS = Climate Hazards Group InfraRed Precipitation, ANFIS = Adaptive Neurofuzzy 
Inference System, PCA = principal component analysis, source: own elaboration 
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missing value with this calculated mean (García-Laencina et al., 
2010; Buuren van and Groothuis-Oudshoorn, 2011). 
� Data normalisation (min-max normalisation) 

Data normalisation is the process of standardising data to 
ensure consistency and comparability. Databases organise data to 
reduce redundancy and improve integrity by dividing it into 
related tables. In statistics and machine learning, normalisation 
adjusts data to a common scale or range, making it easier to 
analyse or improve algorithm performance (Singh and Singh, 
2020; Shantal, Othman and Bakar, 2023). 

x0 ¼
x � xmin

xmax � xmin

ð3Þ

where: x = original value, xmin = minimum value of the feature 
and xmax = maximum value of the feature. 
� Remove outlier 

The next step is to remove any outliers. The dataset is 
preprocessed using the interquartile range (IQR) approach. The 
IQR is a statistical measure to identify data irregularities or 
outliers. It entails dividing the data into four equal parts using the 
Q1, Q2, and Q3 quartile ranges (Cho, Park and Kim, 2022). The 
IQR is calculated by subtracting the first quartile (Q1) from the 
third quartile, e.g. (Q3) (Q3 – Q1). Outliers can be categorised 
into lower and upper outliers (Shabbir and Ahmed, 2022). The 
calculations for identifying these outliers are as follows: 
(a) lower quartile 1 outlier = Q1 – 1.5IQR 
(b) upper quartile 1 outlier = Q3 + 1.5IQR 
(c) lower quartile 3 outlier = Q1 – 3IQR 
(d) upper quartile 3 outlier = Q3 + 3IQR (Buuren van and 

Groothuis-Oudshoorn, 2011). 
The data will be analysed, including correcting missing 

values, normalising data, and treating outliers. Once the 
dataset has been processed, it will be utilised as input data. Next, 
the input data will be split into an 80:20 ratio, with 80% of the 
data used for training and 20% used for validation. 

Hyperparameter tuning 

The third stage entails hyperparameter tuning, a crucial process 
for enhancing the model’s performance. The model employed in 
this study is the Adaptive Neuro-Fuzzy Inference System 
(ANFIS), a hybrid framework that combines neural networks 
with fuzzy logic (Ansari et al., 2021). The tuning process entails 

modifying essential parameters of the ANFIS model to enhance 
its predictive performance. The parameters include the number of 
membership functions that delineate the mapping of inputs to 
membership values in fuzzy logic and the type of membership 
functions that define the shape and characteristics of these 
mappings (e.g., triangular, Gaussian). The fourth parameter, the 
learning rate, regulates the pace at which the model modifies its 
parameters during training. The parameter must be carefully 
selected to ensure effective convergence without overfitting 
(Srilakshmi et al., 2024). 

Developing models 

Once the hyperparameters have been tuned, the model is trained 
using the pre-processed data. The flowchart illustrates two model 
configurations: ANFIS and ANFIS combined with PCA. ANFIS is 
a commonly used machine learning model for complex systems, 
such as flood prediction, as it integrates the learning capability of 
neural networks with the decision-making processes of fuzzy 
logic (Jang, 1993; Hoshino et al., 2024). The GENFIS1 is 
employed to generate a Sugeno-type Fuzzy Inference System 
(FIS) using grid partitioning, systematically creating fuzzy rules 
by combining all possible input membership functions. This 
method is particularly effective for systems with a limited number 
of inputs, as it ensures a comprehensive representation of the 
input space and captures all potential interactions between 
variables. However, while GENFIS1 is well-suited to smaller 
models requiring detailed rule generation, it can become 
computationally demanding for larger systems with many inputs, 
as the number of rules increases exponentially with each 
additional variable (Sarkar et al., 2021). In the second model 
configuration, PCA is applied to reduce the dimensionality of the 
input data. By identifying and retaining only the most significant 
features, PCA helps simplify the model and improve computa-
tional efficiency without sacrificing accuracy (Karamizadeh et al., 
2013). The two models – ANFIS and ANFIS-PCA – are trained 
on the preprocessed dataset, with each aiming to generate the 
most accurate predictions of flood events. The architecture of the 
ANFIS model is depicted in Figure 4 (Pishnamazi et al., 2020). 

Performance evaluation 

The final stage of the process is model validation, where the 
trained models are assessed for their predictive performance. The 
ANFIS model’s accuracy was evaluated using several well- 

Fig. 4. Structure of the Adaptive Neuro-fuzzy Inference System model; source: Pishnamazi et al., 2020, 
modified 
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established metrics: root mean squared error (RMSE), mean 
absolute error (MAE), and R-squared (R2), all of which are widely 
used for evaluating prediction models (Ly et al., 2019). 

The RMSE, defined in Equation (1), measures the square 
root of the average squared differences between predicted and 
actual values. Due to its sensitivity to larger errors, it serves as an 
effective metric for evaluating overall prediction accuracy (Llovo, 
Mosqueira and Vidal, 2018). The MAE, as shown in Equation (2), 
calculates the average absolute differences between predicted and 
observed values, providing a simpler interpretation of prediction 
errors without emphasising large errors (Günal, 2024). Addition-
ally, R2, detailed in Equation (3), measures how much of the 
variance in the observed data is explained by the model, with 
values closer to 1 indicating a better fit. 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
yi � �yið Þ

2
:

r

ð4Þ

MAE ¼
1

n

Xn

i¼1
yi � �yij j ð5Þ

R2 ¼ 1 �

Pn
i¼1 yi � �yið Þ

2

Pn
i¼1 ðyi � �yÞ

2
ð6Þ

where: yi = actual observed value for the i-th data point, 
ȳi = predicted value for the i-th data point, ȳ = mean (average) of 
the observed values (yi), n = total number of observations. 

RESULTS AND DISCUSSION 

RESULTS 

Data description 

Ensuring the integrity and correctness of transformer data 
through the data cleansing process is critical for producing 
trustworthy study results (Maharana, Mondal and Nemade, 
2022). The first step is to eliminate any missing values, ensuring 
that only complete data is accessible for examination. Subse-
quently, certain criteria are employed to further refine the dataset 

by excluding any negative or zero values in crucial measurement 
fields, retaining only pertinent data. Outliers are identified by 
calculating the first quartile (Q1) and third quartile (Q3), which 
facilitates the computation of the IQR to signal values that deviate 
significantly from the predicted range for further examination. 
The thresholds for defining outliers are set at 1.5 times the IQR 
beyond the first quartile (Q1) and third quartile (Q3). Specifically, 
any value below Q1 − 1.5IQR or above Q3 + 1.5IQR is considered 
an outlier. The data cleansing technique guarantees high-quality 
datasets devoid of anomalies that could compromise the validity 
of the study’s results. Following preprocessing, the dataset has 
been meticulously cleansed by removing missing values, filtering 
out invalid data (negative or zero values), and identifying outliers 
using the IQR method. This ensures the dataset is accurate, 
complete, and free from anomalies for reliable analysis. Fig-
ures 5 and 6 are the datasets after applying the preprocessing 
steps outlined. 

The histogram for ARG data exhibits a significant con-
centration of rainfall values close to zero, with a rapid decrease as 
precipitation rises, suggesting that the majority of rainfall events 
recorded by the ARG system are mild to moderate. The boxplot 
highlights the presence of numerous outliers, further supporting 
this observation. These outliers represent extreme rainfall events, 
with values exceeding 5 mm and some even reaching beyond 
20 mm. The IQR is limited, indicating that most rainfall occurs 
between 0 and around 4 mm. On the other hand, the CHIRPS 
satellite data in Figure 6 exhibits a more uniformly distributed 
rainfall pattern across a broader range of values, as demonstrated 
by its histogram. In contrast to ARG, the distribution indicates 
that CHIRPS encompasses a broader range of precipitation 
events, from light to heavy rainfall, with fewer peaks at minimal 
precipitation values. The CHIRPS boxplot confirms this observa-
tion, displaying a broader interquartile range, generally between 
5 and 20 mm, with a smaller percentage of outliers. This means 
that heavy rain events happen less frequently or are smoothed out 
in satellite data. The highest values reach about 40 mm, indicating 
that CHIRPS can record heavier rain events, though not as 
precisely as the ground-based ARG measurements. 

The histogram and boxplot for the water level data (lvl) data 
both provide insights into its distribution and variability depicted 
in Figure 7. 

Fig. 5. The histogram and boxplot of rainfall for automatic rain gauge (ARG) Katulampa data; source: own study 
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The histogram shows that most of the level values fall 
between 30 and 80, indicating a concentration of data in this 
range. The data appears to follow a near-normal distribution but 
is slightly skewed to the right, with fewer occurrences of 
extremely high level values. The peak of the histogram is around 
60–70, indicating that these values are the most common. The 
boxplot further confirms this distribution, with the IQR extending 
from approximately 40–80, showing where the middle 50% of the 
data lies. The median value, which is around 60, divides the 
dataset into two halves. Additionally, the boxplot reveals a few 
outliers beyond 120, suggesting some extreme values in the 
dataset that occur infrequently. 

ANFIS training and validation result  
with CHIRPS satellite data 

The performance of the ANFIS model applied to the CHIRPS 
dataset was evaluated using various configurations of member-
ship functions (MF), MF shapes, and epochs, with distinct results 
obtained for both training and validation phases. The focus of this 
analysis is to assess how hyperparameter tuning, particularly the 
selection of the membership function, MF shape, and the number 
of epochs, influences the model’s accuracy in predicting flood- 
related parameters. 

Training phase 

The model’s performance under various configurations of 
membership functions is summarized in Table 2. The changes 
in these configurations significantly affect the model’s accuracy, 
as reflected in the RMSE, MAE, and R2 values. 

Initially, with a 2-2 Generalised Bell (Gbell MF) and 
50 epochs, the model achieves an RMSE of 33.7, an MAE of 
25.27, and an R2 value of 0.37. However, increasing the complexity 

Fig. 6. The histogram and boxplot of Climate Hazards Group InfraRed Precipitation (CHIRPS) data; source: own 
study 

Fig. 7. The histogram and boxplot of water level (lvl) data; source: own study 

Table 2. Climate Hazards Group InfraRed Precipitation training 
data performance with varying parameter 

Epoch MF Shape 
Training data 

RMSE MAE R2 

50 2-2 Gbell MF 33.7 25.27 0.37 

100 3-3 Gbell MF 32.9 24.67 0.36 

100 3-3 Gauss MF 31.35 25.16 0.41 

100 4-4 Gauss MF 30.14 24.05 0.42  

Explanations: MF = membership function, RMSE = root mean square 
error, MAE = mean absolute error, R2 = determination coefficient. 
Source: own study. 
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to 3-3 MFs and 100 epochs results in a slight decrease in RMSE to 
32.9, and a reduction in MAE to 24.67. Incorporating the Gaussian 
MF (Gauss MF) significantly improves the model’s accuracy, as 
evidenced by a decrease in RMSE to 31.35 and an increase in R2 to 
0.41. The 4-4 Gauss MF configuration gives the best results, 
achieving the lowest RMSE of 30.14, the lowest MAE of 24.05, and 
the highest R2 value of 0.42, demonstrated in Figure 8. 

Figure 8b displays the chart that compares two datasets: 
“trained” (red) and “original” (blue) across the same time or 
observation index. The original data exhibits high variability with 
frequent spikes, indicating the presence of extreme values or 
noise, while the trained model’s output remains comparatively 
lower and more stable throughout. 

Validation phase 

The performance evaluation of the model on the testing dataset 
under different configurations of membership functions is 
presented in Table 3. The evaluation metrics, including RMSE, 
MAE, and R2, provide insights into how these configurations 
influenced the model’s ability. 

The model was tested with different epochs (50 and 100) 
and two types of membership functions: Generalised Bell (Gbell 
MF) and Gaussian (Gauss MF). For 50 epochs using a 2-2 Gbell 
MF, the model achieved an RMSE of 33.3, MAE of 25.17, and an 
R2 of 0.37. When the number of epochs was increased to 100 with 
a 3-3 Gbell MF, the RMSE slightly decreased to 32.8, MAE to 
24.62, while R2 remained similar at 0.36. The performance further 
improved when using Gaussian membership functions. With 100 
epochs and 3-3 Gauss MF, the RMSE dropped to 31.31, MAE was 

25.12, and R2 increased to 0.41. The best performance was 
observed using 4-4 Gauss MF and 100 epochs, achieving an RMSE 
of 30.14, MAE of 24.05, and an R2 of 0.42. Figure 9 depicted the 
RMSE of training error for validation data and a comparison 
chart of predicted results versus actual data in the testing/ 
validation data. Figure 9b indicates a histogram showing 
consistent performance between the training and testing phases, 
with most of the errors being small and centred around 0. The 
smaller frequency of testing errors (yellow) compared to training 
errors (blue) may be attributed to fewer testing samples or 
reduced variance. 

ANFIS training and validation result with ground station data 

� Training phase 
Table 4 presents the results of training the model using 

different number of epochs (50 and 100) and membership 

Fig. 8. The result of satellite data using the Adaptive Neurofuzzy Inference System with Climate Hazards Group InfraRed 
Precipitation training phase: a) the root mean square error of training data, b) comparison chart of predicted results and 
actual data in training data; source: own study 

Fig. 9. The result of the Adaptive Neurofuzzy Inference System training phase: a) the root mean square error of 
training error of validation data, b) comparison chart of predicted results and actual data in testing/validation 
data; source: own study 

Table 3. Climate Hazards Group InfraRed Precipitation valida-
tion data performance with varying parameter 

Epoch MF Shape 
Training data 

RMSE MAE R2 

50 2-2 Gbell MF 33.3 25.17 0.37 

100 3-3 Gbell MF 32.8 24.62 0.36 

100 3-3 Gauss MF 31.31 25.12 0.41 

100 4-4 Gauss MF 30.14 24.05 0.42  

Explanations as in Tab. 2. 
Source: own study. 
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functions (MF), specifically Gbell MF and Gauss MF. With 50 
epochs and a 2-2 Gbell MF configuration, the model achieved an 
RMSE of 14.22, an MAE of 10.66, and an R2 of 0.72. Increasing 
the number of membership functions to a 3-3 Gbell MF while 
keeping the epochs at 50 resulted in a significant decrease in 
RMSE to 8.3 and MAE to 6.64, with a slight improvement in R2 to 
0.73. Switching to Gauss MF showed further improvement in the 
model’s performance. Using 50 epochs and a 3-3 Gauss MF, the 
RMSE reduced further to 6.12, the MAE decreased to 4.28, and 
the R2 remained at 0.73. Finally, increasing the number of epochs 
to 100 with 3-3 Gauss MF yielded the best results, achieving an 
RMSE of 6.05, an MAE of 3.63, and an R2 value of 0.74. This 
indicates the model’s enhanced ability to accurately fit the 
training data with this configuration. 
� Validation phase 

Table 5 presents the evaluation of the model’s performance 
during the validation phase using validation data, under different 
configurations of epochs and MF. The evaluation metrics used 
include RMSE, MAE, and R2. 

With a configuration of 50 epochs and 2-2 Gbell MF, the 
model achieved an RMSE of 14.11, an MAE of 10.65, and an R2 of 
0.72. Increasing the number of membership functions to 3- 
3 Gbell MF, with the same number of epochs, reduced the RMSE 
to 8.2, decreased the MAE to 6.60, and slightly improved the R2 to 
0.73. The use of Gauss MF yielded further enhanced performance. 
Using 50 epochs and 3-3 Gauss MF, the RMSE decreased to 6.1, 
the MAE to 4.21, while R2 remained at 0.73. Finally, increasing 
the number of epochs to 100 with the 3-3 Gauss MF confi-
guration resulted in the best performance, with an RMSE of 6.01, 

an MAE of 3.60, and an R2 of 0.74. These results indicate an 
enhancement in model accuracy and an improved generalisation 
to validation data. 

ANFIS-PCA training and validation result  
with ground station data 

This process utilises the ANFIS-PCA algorithm, combining 
Adaptive Neuro-Fuzzy Inference System (ANFIS) with principal 
component analysis (PCA). 
� Training phase 

Table 6 summarises the training performance of the ANFIS- 
PCA model across different configurations of epochs and 
membership functions, evaluated using RMSE, MAE, and R2 

metrics. With 50 epochs and 2-2 Gbell MF, the model achieved an 
RMSE of 0.18, an MAE of 0.14, and an R2 of 0.81. Increasing the 
number of epochs to 100 with the same membership function 
configuration slightly improved the RMSE to 0.17 and signifi-
cantly reduced the MAE to 0.08, while R2 remained consistent at 
0.81. When using a configuration of 3-3 Gbell MF with 50 epochs, 
the model’s performance improved further, achieving an RMSE of 
0.16, an MAE of 0.12, and an R2 of 0.82, suggesting a slightly 
better fit to the training data. Finally, with 100 epochs and 3-3 
Gauss MF, the model achieved its best performance, yielding the 
lowest RMSE of 0.13, an MAE of 0.12, and an R2 of 0.82, 
indicating enhanced accuracy in capturing the underlying 
patterns within the training dataset. Figure 10 illustrates two 
aspects of the ANFIS-PCA model’s performance during training. 
The left panel presents the training error throughout the training 
epochs, while the right panel shows a comparison between the FIS 
output and the actual training data. 

The training error plot indicates the error trend over 100 
epochs. The error, measured on the y-axis, starts at approximately 
0.146 and gradually decreases throughout the training process, 
reaching about 0.137 by the final epoch. This indicates that the 
model is effectively learning and gradually minimising the discre-
pancy between predicted and actual values. Figure 10b displays the 
model’s performance, where the trained model (red) performs 
reasonably well following the general trends of the original data 
(blue). However, it fails to capture the more extreme fluctuations. 
� Validation phase 

Table 7 presents the validation phase results for the ANFIS- 
PCA algorithm. The table summarises the model’s performance 
under different configurations of epochs and MF, evaluated using 
metrics such as RMSE, MAE, and R2. 

Table 4. Adaptive Neurofuzzy Inference System training 
performance with ground station data for different membership 
functions 

Epoch MF Shape 
Training data 

RMSE MAE R2 

50 2-2 Gbell MF 14.22 10.66 0.72 

50 3-3 Gbell MF 8.3 6.64 0.73 

50 3-3 Gauss MF 6.12 4.28 0.73 

100 3.3 Gauss MF 6.05 3.63 0.74  

Explanations as in Tab. 2. 
Source: own study. 

Table 5. Adaptive Neurofuzzy Inference System validation 
performance using ground station data for different membership 
functions 

Epoch MF Shape 
Training data 

RMSE MAE R2 

50 2-2 Gbell MF 14.11 10.65 0.72 

50 3-3 Gbell MF 8.2 6.60 0.73 

50 3-3 Gauss MF 6.1 4.21 0.73 

100 3.3 Gauss MF 6.01 3.60 0.74  

Explanations as in Tab. 2. 
Source: own study. 

Table 6. Adaptive Neurofuzzy Inference System-principal 
component analysis training performance using ground station 
data 

Epoch MF Shape 
Training data 

RMSE MAE R2 

50 2-2 Gbell MF 0.18 0.14 0.81 

100 2-2 Gbell MF 0.17 0.08 0.81 

50 3-3 Gbell MF 0.16 0.12 0.82 

100 3.3 Gauss MF 0.13 0.12 0.82  

Explanations as in Tab. 2. 
Source: own study. 
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With 50 epochs and a 2-2 Gbell MF, the model achieved an 
RMSE of 0.17, an MAE of 0.14, and an R2 of 0.81. Increasing the 
number of epochs to 100 for the same membership function 
configuration resulted in an improvement, reducing the RMSE to 
0.16 and the MAE to 0.12, while R2 remained at 0.81. Using 50 
epochs and 3-3 Gbell MF, the model further improved its 
performance, achieving an RMSE of 0.15, an MAE of 0.11, and an 
R2 of 0.82. Finally, the best results were achieved with 100 epochs 
and 3-3 Gauss MF, attaining an RMSE of 0.12, an MAE of 0.10, 
and an R2 of 0.82. Figure 11 illustrates the RMSE trend for 
training and validation errors, along with a comparison of 
predicted and actual data during testing/validation phases. 

The histogram in Figure 11b displays the error distributions 
for the training (blue) and testing (yellow) phases of the model. 
Both distributions are centred around zero, indicating that the 
model generally produces small errors in both phases. The 
training data exhibits a higher frequency of errors tightly 

clustered around zero, suggesting superior performance on the 
training set. In contrast, the testing errors are more dispersed, 
with a broader range, implying slightly reduced accuracy or 
generalisation when applied to unseen data. However, the overall 
concentration of both error distributions near zero indicates that 
the model performs reasonably well, with minimal bias or large 
prediction errors across both datasets. 

DISCUSSION 

The present research investigates the critical role of data 
preprocessing and model selection in achieving reliable flood 
prediction. Through thorough data cleansing, the study elimi-
nated anomalies such as missing, negative, or zero values, creating 
a robust foundation for model training. The performance of the 
ANFIS-PCA model during both training and validation phases, 
using two distinct data sources – ground station data and 
CHIRPS satellite data. The findings illustrate the significant 
impact that various factors, such as the number of epochs, the 
complexity of membership functions, and the integration of 
PCA, have on enhancing the model’s predictive accuracy. The 
study underscores the complementary strengths of the two data 
types used. Ground station data provides highly accurate, 
localised measurements, which lead to more precise learning 
and better performance metrics, as reflected by lower RMSE and 
MAE values. On the other hand, CHIRPS satellite data offers 
extensive spatial coverage, which helps the model capture broader 
rainfall patterns that may influence flooding events beyond the 
immediate vicinity of the ground stations. The integration of PCA 
was particularly impactful in reducing the dimensionality of the 
dataset, thereby facilitating a more efficient learning process by 
focusing on the most relevant features while minimising noise. By 

Fig. 10. Training error and model output comparison for Adaptive Neurofuzzy Inference System-principal 
component analysis model; source: own study 

Table 7. Adaptive Neurofuzzy Inference System-principal 
component analysis validation performance using ground station 
data 

Epoch MF Shape 
Training data 

RMSE MAE R2 

50 2-2 Gbell MF 0.17 0.14 0.81 

100 2-2 Gbell MF 0.16 0.12 0.81 

50 3-3 Gbell MF 0.15 0.11 0.82 

100 3.3 Gauss MF 0.12 0.10 0.82  

Explanations as in Tab. 2. 
Source: own study. 

Fig. 11. The result of Adaptive Neurofuzzy Inference System-principal component analysis validation phase: a) the 
RMSE of training error of validation data, b) comparison chart of predicted results and actual data in testing/ 
validation data; source: own study 
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applying PCA, the model concentrated on the key components 
that most strongly influenced flooding outcomes, which resulted 
in improved R2 values and reduced error metrics during both 
training and validation phases. The combination of PCA with 
ANFIS thus demonstrated a powerful approach for managing 
complex datasets, improving not only the accuracy but also the 
computational efficiency of the modelling process. 

CONCLUSIONS 

This research establishes the Adaptive Neurofuzzy Inference 
System integrated with Principal Component Analysis (ANFIS- 
PCA) as a highly effective method for flood prediction, 
particularly when using ground station data for model training. 
The integration of PCA significantly improved the model’s 
performance by focusing on key features and reducing noise, 
which contributed to lower RMSE and MAE values, along with 
higher R2 scores across both the training and validation phases. 
The increased accuracy achieved with Gaussian membership 
functions and the observed benefits of extending the number of 
training epochs further underscored the value of carefully tuning 
model parameters for optimal performance. Moreover, while 
ground station data enhanced model precision through detailed 
local insights, CHIRPS satellite data provided valuable regional 
perspectives, making it clear that a combined approach could lead 
to more robust flood prediction models. The findings suggest that 
the ANFIS-PCA model is well-suited for localised predictions, 
providing a reliable and accurate tool for predicting flooding 
events, while the broader scope offered by CHIRPS satellite data 
remains essential for capturing regional hydrological dynamics. 

Future research could focus on integrating additional 
environmental variables input, such as water extent and soil 
moisture and flood conditioning factors like slopes, geomorpho-
logical units, land use, land cover, and soil physical properties, to 
further enhance predictive capability. The implementation of 
real-time dynamic learning could also be explored to adapt the 
model continuously as new data becomes available, thereby 
enhancing the reliability of real-world flood prediction systems. 
Additionally, comparing ANFIS-PCA with advanced deep learn-
ing techniques, such as long short-term memory and random 
forest, could provide insights into the competitiveness of different 
approaches for capturing complex spatiotemporal patterns. The 
authors suggest implementing bias correction in future stages of 
the research. Bias correction methods can significantly improve 
model reliability by adjusting systematic discrepancies between 
observed and predicted data. Additionally, the authors propose 
the use of quantile-mapping correction or non-parametric bias 
correction. This method is particularly effective in addressing 
differences in distribution between the observed data and the 
modelled data, thereby ensuring that the predicted outputs better 
reflect the statistical properties of the actual data. 

ABBREVIATIONS 

ANFIS  Adaptive Neuro-Fuzzy Inference System 
AI  artificial intelligence 
ANN  artificial neural network 
ARG  automatic rain gauge 

CHIRPS  Climate Hazard Group Infrared Precipitation with   
Station 

IQR  interquartile range 
MAE  mean absolute error 
NN  neural network 
PCA  principal component analysis 
Q1  first quartile 
Q2  second quartile 
Q3  third quartile 
R2  coefficient of determination 
RMSE  root mean square error 
SVM  support vector machine 
SVR  support vector regression 
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