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Abstract: The article discusses the critical role of artificial intelligence (AI) in modern agriculture, with a particular 
focus on potato production. AI technologies are becoming essential tools enhancing both efficiency and sustainability 
in farming practices. By utilizing big data analysis, precision monitoring, and automation, AI can significantly improve 
agricultural outcomes. For instance, AI algorithms can optimise the use of natural resources and chemical inputs, 
leading to improved yield forecasting and more effective management of diseases and pests that affect crops. 
Additionally, AI can play a key role in agriculture with is its capability to monitor soil conditions and assess soil 
fertility. This enables farmers to optimise fertilisation techniques, leading to improved crop health but also better water 
management through precise irrigation practices. These advancements are especially crucial in addressing the rising 
food demand posed by global population growth, while simultaneously managing limited environmental resources. 
Despite the numerous benefits offered by AI, its implementation in agriculture faces challenges. High technology costs 
and the need for extensive education and training for farmers can hinder widespread AI adoption. Therefore, future 
research should aim at developing affordable AI solutions and comprehensive training programmes to maximise the 
technology's potential in fostering enhanced sustainable food production globally.  
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INTRODUCTION 

In recent years, the agricultural sector has witnessed significant 
changes driven by technological advancements. Among these, 
artificial intelligence (AI) has been playing a crucial role in the 
industry’s transformation, making production more efficient 
and sustainable. As the global population continues to rise, the 
demand for food increases, necessitating innovative approaches 
to farming practices. Technologies based on AI encompass 
robotics, data analytics, remote sensing, and natural language 
processing, all of which support farmers in making informed 
decisions and enhancing productivity (Veeragandham and 
Santhi, 2020). These technologies provide actionable solutions 
to optimise agricultural processes, leading to improved crop 
quality and minimised losses. As  agricultural production 
becomes increasingly complex, farmers are increasingly adopt-
ing AI tools to monitor and analyse data related to their crops. 
These advanced systems enable the efficient collection of 
information regarding environmental conditions, soil quality, 

and plant health. For instance, the utilisation of remote sensing 
technology allows farmers to monitor land using drones and 
satellite imagery, facilitating early detection of plant health 
issues (Meshram et al., 2021). This proactive approach 
contributes to timely interventions and effective management 
of fertilisers and pesticides. 

Moreover, integrating AI into farm management equips 
farmers with tools necessary to optimise supply chains. By 
analysing demand and supply data, they can better anticipate 
market requirements, reducing food waste and improving sales 
planning (Tripathi et al., 2023). The introduction of AI-driven 
systems, including automated irrigation management tools, 
significantly enhances the efficiency of water resource usage, 
a critical factor in addressing global climate challenges. AI also 
enables automation in agricultural practices such as harvesting 
and planting, leading to increased productivity and reduced 
dependence on manual labour (Araújo et al., 2023). These 
innovations are particularly vital for promoting sustainable food 
production methods amid a growing global population. 
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Despite the promising benefits AI in the agricultural sector, 
fully harnessing its potential requires adequate investments in 
technological infrastructure and the development of digital skills 
among agricultural workers. These investments are essential to 
ensure that AI improves sustainability, increases yields, and 
enhances farming efficiency while simultaneously minimising 
environmental impact. 

POTATO PRODUCTION MANAGEMENT:  
GLOBAL AND LOCAL PERSPECTIVES 

Potato (Solanum tuberosum L.) is the world’s fourth most 
important crop, after corn, wheat, and rice. According to the 
Food and Agriculture Organization of the United Nations (FAO), 
global potato production was about 370 Tg in 2022, with China, 
India and Russia being the largest producers. China remains in the 
top position, accounting for more than 90 Tg, or nearly 25% of 
total global production. India ranks second with approximately 
50 Tg (FAO, 2024). In Europe, Poland plays a significant role as 
one of the main potato producers, alongside Germany and France. 
According to Poland’s Central Statistical Office (Pol.: Główny 
Urząd Statystyczny), national potato production reached about 
8.5 Tg in 2023. This reflects some stability in production compared 
to the past few years, albeit with slight fluctuations due to climate 
change and the variety of cultivation methods used. Despite this 
stability, the cultivated area in Poland has been steadily decreasing, 
prompting farmers to enhance productivity and efficiency on 
existing farmland. Against the backdrop of global trends, Poland 
continues to adopt modern technologies and sustainable farming 
practices to meet growing market demands (GUS, 2024). 

POTATO PRODUCTION MANAGEMENT:  
KEY ASPECTS AND CHALLENGES 

To meet both local and export needs, efficient and sustainable 
management of potato farms is becoming crucial. Managing 
a potato farm involves several key stages of production, each with 
unique challenges and requirements. The process begins with 
selecting the right varieties to match local climate and soil 
conditions. Different varieties differ in their disease resistance, 
water requirements, and length of the growing season, all of which 
directly impact yield potential. Soil preparation is another critical 
step, ensuring high fertility and proper drainage. Fertile soil, 
supported by proper fertilisation techniques, is essential to 
maximise crop productivity, while water management plays 
a key role, especially in the context of climate change. According 
to publicly available data from United States Agency for 
International Development (USAID), effective irrigation practices 
are essential to take into account potato's high water demand 
during tuber formation to secure high quality yields. Disease and 
pest control pose some of the most serious challenges for potato 
producers. Pests such as the potato beetle and diseases like potato 
blight can severely reduce yields, necessitating regular monitoring 
and the implementation of integrated crop protection pro-
grammes. The volatility of health challenges and regulations 
restricting pesticide use force farmers to seek new, sustainable 
solutions. Other key issues include efficient harvesting and 
storage. Proper timing minimises losses, while optimal storage 

ensures proper quality of stored tubers. Moreover, conditions, 
such as high humidity and low temperature, are essential to reduce 
spoilage and extend storage life. Sustainable potato management 
requires integrating market and economic aspects. Price volatility 
and market accessibility introduce additional challenges, requiring 
farms to maintain high operational efficiency and quickly adapt to 
dynamic market conditions. In summary, successful potato 
production depends on sustainable approach that integrates 
traditional practices with modern technology and innovation 
(Ahmad and Sharma, 2023). As technologies such as drones, data 
analytics, and machine learning (ML) evolve, farms can optimise 
their operations more efficiently, increasing yields while minimis-
ing environmental impact. This progress enables farmers to meet 
growing market demands, contributing to food security (Guo 
et al., 2019; Hoy and Wrenn, 2020; Kadigi et al., 2020; Pavlović 
et al., 2020; Thidar et al., 2020; Fujiyoshi et al., 2021; Sarangi et al., 
2021; Ahmad and Sharma, 2023). 

APPLICATION OF ARTIFICIAL INTELLIGENCE  
IN POTATO PRODUCTION 

THE ROLE OF ARTIFICIAL INTELLIGENCE  
IN THE TRANSFORMATION OF POTATO PRODUCTION 

Artificial intelligence is gaining recognition as a key driver of 
transformation in the agricultural sector, including potato 
production. AI encompasses a range of technologies, including 
machine learning, data analytics, robotics, and predictive systems, 
all of which enhance efficiency, precision, and sustainability of 
agricultural production. Its significance lies in its ability to process 
and analyse vast amounts of data from sensors, satellites, and 
drones. This allows farmers to gain precise information about 
weather patterns, soil conditions, and plant health. In potato 
cultivation, this analysis capability allows for optimal management 
of resources and prediction of risks such as pest infestations and 
disease outbreaks. Advancements in AI offer development 
opportunities in potato production, including more precise 
farming, reducing the use of water, fertilisers, and pesticides, 
which are key factors for improving productivity and sustainability. 
Additionally, automating cultivation processes with robotics 
increases productivity and reduces reliance on manual labour. AI 
also holds a great potential for enhancing efficiency of supply chain 
and logistics. Predictive systems can forecast yields and manage 
inventory, helping farmers to plan sales and distribution more 
effectively. In the long term, AI can increase global food availability 
by optimising production processes and minimising losses. 
Currently, AI in potato production is evolving rapidly, with the 
potential to further integrate more advanced technologies, allowing 
for more accurate and faster response to food production 
challenges (Niedbała and Piekutowska, 2018; Gómez et al., 2019; 
Paudel et al., 2021; Piekutowska et al., 2021; Patnaik and Padhy, 
2022; Kurek et al., 2023; Aslan et al., 2024). This manuscript 
presents the most important areas where AI supports agricultural 
production, with a particular focus on potato cultivation. 

Table 1 lists various applications of AI in potato production, 
along with their descriptions, benefits, examples of technologies 
used, and related scientific work. The analysis of these aspects 
provides a better understanding of how AI contributes to 
sustainable development of the agricultural sector. 
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MONITORING AND ANALYSIS OF THE SOIL ENVIRONMENT 

The application of AI and ML in agriculture is a crucial step 
towards sustainable farmland management, including potato 
farms, where soil quality plays a key role in crop quality and yield. 
Modern technology enables precise soil monitoring through the 
use of sensors and advanced analytical techniques. Recent 
research indicates that sensor networks can collect data on 
moisture, pH, and nutrient levels, which, when analysed using 
ML algorithms, allow for accurate predictions of soil fertility 
changes and the development of effective fertilisation strategies. 
Dubois, Teytaud, and Verel (2021) presented how sensor 
networks integrated with ML can significantly improve soil 
management through real-time monitoring and prediction of soil 
properties. AI-based soil abundance assessment can determine 
soil diversity at the micro- and macro-levels. A paper by Maia, 
Lurbe, and Hornbuckle (2022) showed that ML models can 
accurately predict the variability of soil properties in different 
parts of a field, enabling more precise application of soil additives 
and minimising fertiliser use. This approach not only optimises 
resource use but also reduces the environmental impact of 
chemicals. Neural networks and regression algorithms are also 
used to determine soil grain size, a key factor affecting soil 
structure and water retention capacity. By providing accurate 
information on grain size, these AI-driven methods help farmers 
better understand soil water retention and mechanical properties, 
enabling them to adjust tillage operations to crop specific needs. 
As Wang and Su (2024) point out, integrating AI with soil testing 
plays a key role in sustainable agriculture by lowering carbon 
footprints and increasing production efficiency. 

The prediction and analysis of soil texture using artificial 
intelligence are becoming essential for improving ecosystem 
health, agricultural productivity, and sustainable land manage-
ment. Traditional methods of soil texture analysis, such as sieving 
and sedimentation, tend to be time-consuming, costly, and 
require complex data processing, often leading to subjective and 
erroneous conclusions. AI-driven tools, including machine 
learning and deep learning (DL), offer a faster alternative and 

more accurate alternative by analysing compositional, spectral, 
and geographic data. AI not only reduces the time and costs of 
conventional analysis but also enables scalability through cloud 
computing and mobile applications. This allows farmers and land 
managers to adjust cultivation practices. A key challenge remains 
ensuring data quality, interpretability, and systems integration, 
which requires collaboration among scientists, engineers, and 
decision makers (Awais et al., 2023; Liu et al., 2023). Artificial 
intelligence plays a key role in modern approaches to soil water 
resource (SWC) monitoring. Traditional measurement methods, 
such as frequency domain reflectance (FDR) and time domain 
reflectance (TDR), can be susceptible to climate variability. The 
innovative 2020 Active Heated Optical Fibre (AHOF) method 
allows for more precise measurements through short heat pulses 
in the soil. However, despite its effectiveness, AHOF requires 
error correction, which is accomplished through artificial neural 
networks (ANNs) (Liu et al., 2023). Additional climate layers are 
incorporated into ANN models to enhance the accuracy of results 
in irrigation forecasting and agricultural management. In 
precision agriculture, neural networks support the analysis of 
sensor data on pH, moisture, and soil mechanical structure, 
aiding informed decision-making. Models such as the multilayer 
perceptron show lower mean square errors (MSE) and root mean 
square errors (RMSE) compared to other ANN models (Roshan, 
Kazemitabar and Kheradmandian, 2022). 

Work continues to create global-scale remote databases for 
SWC. Adaptive neuro fuzzy inference system (ANFIS) models 
outperform traditional statistical models in precision and 
efficiency, offering implicit insights into SWC variables (Hosseini 
et al., 2021). Understanding soil texture and water content is 
crucial for proper crop management, and AI-powered tools offer 
advanced solutions for optimising soil and water resource 
management. The introduction of AI technology in soil 
monitoring not only improves precision but also ensures rapid 
and efficient management of agricultural resources. With 
innovative sensors like the arrayed fibre Bragg grating (AH- 
FBG), AI enables customised approaches to different soil 

Table 1. Examples of the application of artificial intelligence in potato cultivation 

AI application Description Benefits Examples of technologies Sample works 

Plant health monitoring use of sensors and imaging 
to assess plant condition 

early detection of diseases 
and pests 

drones, multispectral  
cameras 

Qaswar, Bustan and 
Mouazen (2024), Wand 
and Su (2024) 

Irrigation optimisation algorithms for analysing 
soil moisture data and 
weather forecasts 

reduced water loss,  
improved yields 

IoT systems, predictive 
models 

Jimenez-Lopez, Ruge- 
Ruge, Jimenez-Lopez 
(2021), Vianny et al. (2022) 

Yield prediction analysis of historical data 
and weather conditions to 
forecast yields 

better planning and harvest 
management 

machine learning  
algorithms 

Piekutowska et al. (2021), 
Niedbała and Piekutowska, 
2018) 

Harvest automation robotic systems for harvest-
ing crops under optimal 
conditions 

increased efficiency and 
reduced labour costs 

agricultural robots Abdelhamid et al. (2024) 

Pest management optimi-
sation 

AI for risk analysis and 
optimising pesticide use 

reduced chemical usage 
and improved soil health 

multi-criteria algorithms Talukder et. al. (2023), 
Kariyanna and Sowjanya 
(2024)  

Source: own elaboration. 
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conditions, improving the efficiency and sustainability of 
agricultural operations under changing climatic conditions 
(Awais et al., 2023; Liu et al., 2023). Artificial intelligence models 
and digital soil mapping (DSM) have become the standard for 
predicting soil properties. When combined with advanced ML 
algorithms, such as random forests (RFs), extreme gradient 
boosting (XGBoost), and deep neural networks (DNN), these 
technologies significantly improve the accuracy of soil texture and 
moisture prediction. While conventional mapping methods often 
lack accuracy, the use of DSM with quantile regression forest 
(QRSs) has achieved high precision in assessing soil fertility. 
However, limitations remain for some soil nutrients, including 
nitrogen and potassium. Alternative technologies, such as self- 
organising maps and ANFIS models, offer advanced opportu-
nities for error correction and improved efficiency. Data quality 
remains a key element, making careful data collection and 
processing essential. 

Feature engineering and integration of domain knowledge 
enhance accuracy of soil nutrient estimations. It is worth noting 
that the choice of ML techniques should also take into account 
interpretability and statistical properties of the data to ensure 
reliable predictions. Finally, integrating agricultural knowledge 
strengthens confidence in modelling results, indicating the need 
for further innovation and research into AI-driven sustainable soil 
management (Hounkpatin et al., 2022; Folorunso et al., 2023). 

Soil nutrient variability can reduce crop yields, making 
accurate soil fertility classification and effective fertiliser applica-
tion essential for increasing crop productivity. Currently, soil 
fertility levels are assessed by laboratory tests of soil samples, and 
fertilisers are applied according to calculations based on soil 
nutrient availability. 

The use of artificial intelligence in  cropland soil analysis, 
particularly in estimating soil organic carbon (SOC), is crucial in 
understanding soil function. A study by Emadi et al. (2020) used 
advanced ML algorithms, such as support vector machines 
(SVMs), ANNs, regression trees, RFs, extreme gradient boosting, 
and DNN, to predict SOC. The models were trained using 1879 
soil samples and 105 auxiliary variables, with a genetic algorithm 
used to select effective features. The DNN model proved to be the 
most effective, showing the lowest prediction error and high 
accuracy, confirming its usefulness in processing large data sets. 
The results show that precipitation is the main factor influencing 
SOC variability, with soils covered with lush vegetation exhibiting 
the highest SOC content. The use of DNN’s flexible structure 
allows for more detailed extraction of information from ancillary 
data, making it a promising tool for forecasting SOC maps at the 
provincial level with minimal uncertainty. 

Understanding soil structure variability within a field is 
crucial for modern agriculture, which seeks to minimise input use 
by precisely adjusting fertiliser and water rates to meet crop needs 
(Kempenaar et al., 2017). A reliable method for studying soil 
variability is measuring soil electrical conductivity (EC), which 
indicates the soil’s ability to conduct electricity. The EC serves as 
a key indicator of soil compactness and sorptive capacity, both of 
which affect fertility. By measuring EC, farmers map soil 
variability, estimate yield potential, and accurately determine 
sampling and fertiliser application sites. Adjusting fertiliser 
application rates to match varying soil conditions helps prevent 
nutrient deficiencies and excesses, thus protecting the environ-
ment and reducing costs. Site-specific fertiliser application rates 

minimise the risk of environmental pollution and reduce 
production costs (Nawar et al., 2017; Kiełbasa, 2020; Mazur, 
Gozdowski and Wójcik-Gront, 2022). This knowledge is actively 
used by potato farmers. A study by Cambouris et al. (2006) 
evaluated the effectiveness of soil electrical conductivity in 
determining homogeneous management zones (MZs), which 
are crucial for site-specific crop management (SSCM). The study 
revealed that two MZs provided optimal conditions, showing 
significant differences in water regime and soil properties, such as 
sandy sediment thickness, water table depth, and chemical 
composition. The analysis also showed significant differences in 
potato yields between the MZs, mainly due to differences in water 
availability. The results suggest that EC can be an effective tool for 
determining MZ in fields where soil properties affect moisture 
availability. 

AI-driven technologies are increasingly used for determin-
ing soil fertility zones (Schillaci et al., 2021; Denora et al., 2022). 
These technologies enable precise mapping of varying soil 
fertility within a single field. This allows farmers to tailor inputs 
such as fertiliser and irrigation to local needs, leading to cost 
optimisation and increased production efficiency. Machine 
learning algorithms can also forecast long-term soil changes, 
offering valuable insights for developing management strategies 
well in advance (Awais et al., 2023). In conclusion, modern AI- 
driven soil quality assessment on potato farms presents 
a promising step towards more precise, efficient, and sustainable 
agriculture. The use of AI and ML in soil evaluation and analysis 
is transforming traditional management methods into intuitive, 
data-driven systems, helping to increase yields while protecting 
the environment. AI-based technologies can identify nutrient 
deficiencies and soil defects by analysing data from various 
sources, including soil sensors, soil testing drones, and 
smartphone cameras. This allows farmers to assess the amount 
of organic matter that should be added to the soil to improve its 
structure and properties. Additionally, artificial intelligence and 
its supporting technologies facilitate efficient processing of both 
structured and unstructured data (Javaid et al., 2023). 

FERTILISATION 

Modern agriculture advocates precision in fertilisation, ensuring 
that nutrients are applied in optimal amounts to meet crop needs 
while minimising excess (Shanmugavel et al., 2023). In potato 
production, variable rate fertilisation is commonly used, enabling 
farmers to use fertiliser in precisely defined quantities, tailored to 
the specific field conditions. This approach ensures that each part 
of the field receives the necessary resources needed for optimal 
plant growth, significantly reducing waste and lowering operating 
costs. The technology leads to higher yields and better use of 
available resources, making agriculture more efficient and 
sustainable (Kempenaar et al., 2017). Artificial intelligence plays 
a crucial role in optimising mineral fertilisation rates for potatoes. 
In a study by Tkatek et al. (2023), an accurate model was 
developed to determine optimal levels of nitrogen, phosphorus, 
and potassium for high quality and yield. The analysis included 
900 field experiments available on Kaggle, comparing predictive 
models such as k-nearest neighbour (KNN), SVM, naive Bayes 
classifier (NB), decision tree (DT), RFs and XGBoost. The models 
were evaluated using mean and median squared errors (MAE and 
MSE), and coefficients of determination (R2). The results showed 
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that the XGBoost model had the highest R2, and MSE and MAE 
values outperforming other models. Finally, a hardware imple-
mentation of the system was proposed to assist farmers in 
effective fertiliser management in field practices. 

Using ML algorithms and real-time data from soil and 
plant sensors, variable rate application (VRA) systems tailor 
fertiliser application rates to the specific needs of different zones 
of the field. This approach optimises nutrient use, increases 
yields, and reduces environmental impact by reducing over- 
fertilisation and surface runoff. Integrating remote sensing 
technologies, such as normalised difference vegetation index 
(NDVI), improves these applications with real-time assessment 
of plant health and soil quality. A study by Qaswar, Bustan and 
Mouazen (2024) on potato crops showed that variable rate 
nitrogen (VR-N), applied using near-infrared spectroscopy and 
satellite data, improves fertiliser management. The results show 
that VR-N reduced nitrogen use by 50% in high fertility zones, 
while increasing it by 25–50% in low fertility zones, leading to an 
8.1% increase in potato yields. The technology tested provided 
a relative gross income of €374.83 per ha compared to uniform 
fertiliser application, highlighting both economic and environ-
mental benefits. Agronomists and farmers can apply these 
findings to increase potato yields and reduce environmental 
impacts through precise nitrogen management (Qaswar, Bustan 
and Mouazen, 2024). 

Another study by Coulibali, Cambouris, and Parent (2020) 
evaluated the use of ML techniques as an alternative to 
traditional statistical models for making fertiliser selection 
recommendations in potato production at a local scale. A large 
amount of field trial data was analysed, considering variety 
traits, soil properties, weather indices, and fertiliser rates of N, 
P and K as predictor variables. Five models: Mitscherlich, KNN, 
RFs, NNs and Gaussian processes (GP) were compared for 
optimal N, P and K rates determined by marketable yield and 
tuber size and density. The ML models outperformed the 
Mitscherlich trivariate model, achieving R2 of 0.49 to 0.59 for 
marketable yield, which was better than the 0.37 obtained by the 
Mitscherlich model. These coefficients for large tubers ranged 
from 0.55 to 0.64, and for medium tubers from 0.60 to 0.69. The 
NN and GP models performed particularly well in predicting 
optimal fertiliser rates for commercial potato yields. The GP 
model stood out in risk assessment due to its probabilistic 
approach, which proved beneficial for fertiliser recommenda-
tions in the Quebec region. Additionally, the integration of 
historical weather data strengthened the models’ effectiveness, 
despite the lack of precise forecast data. 

The article by Sujatha and Jadhair (2023) presents state-of- 
the-art approaches to soil fertility classification using machine 
and deep learning, following PRISMA guidelines. The study aims 
to explore methods used by researchers to effectively predict and 
classify soil fertility and discusses fertiliser recommendation 
systems. It demonstrates that ML-based techniques can provide 
highly accurate soil fertility assessments. The article emphasises 
the importance of maintaining adequate soil nutrient levels and 
addressing nutrient deficiencies. The authors identify research 
gaps and outline challenges in soil fertility classification and 
fertiliser recommendations, suggesting new research directions to 
develop more affordable solutions. A model has also been 
developed that has the potential to help farmers enhance soil 
fertility while reducing fertiliser costs. 

IRRIGATION OPTIMISATION 

Artificial intelligence offers innovative solutions for optimising 
crop irrigation, including potato farming. Precision irrigation 
based on artificial intelligence aims to deliver the right amount of 
water to plants at the right time and place (Kumar et al., 2023). By 
integrating  weather forecast data, soil moisture sensors, and plant 
requirements, AI algorithms create tailored irrigation schedules 
(Abioye et al., 2022). This method prevents overwatering, 
minimises water loss through evaporation and runoff, and 
ensures that water goes where it is needed most. A review article 
by Talaviya et al. (2020) discussed irrigation automation using 
various AI technologies, pointing out their effectiveness. Al- 
Zubaidi et al. (2019) evaluated an IoT-based Integrated Water 
Management (IEWM) system, which achieved higher accuracy 
(98.7%) compared to traditional systems (87%). The IEWM 
system, which is an expert AI system integrated with IoT sensors, 
responds faster and more efficiently than traditional solutions. In 
addition, Chaithra et al. (2021) proved the impact of water stress 
on crop yields, highlighting that based on sensor data, drip 
irrigation at 25% depletion of available soil moisture produced the 
highest yields. This approach helps maintain adequate moisture 
levels, promoting better nutrient uptake and improving yield 
factors. Crop irrigation system optimisation uses a variety of 
Internet of Things (IoT) components that monitor parameters 
such as soil moisture, temperature, weather conditions, and other 
environmental variables. The collected data is stored in the cloud, 
where ML algorithms process it for analysis and forecasting. In 
a paper by Vianny et al. (2022), a hybrid irrigation system model 
was proposed using KNN, gradient boosting-based trees (GBT), 
long-term memorisation, and Spearman rank. The KNN algo-
rithm was used to gather the closest sensor information, while 
GBT and long short-term memory (LSTM) were used to predict 
actual values and analyse time series. Admittedly, the study was 
conducted on a banana crop in 2020 and 2021, and the results 
indicated 31.4% water savings for a single banana plant, resulting 
in a significant reduction in fresh water and energy consumption. 
It is worth noting that similar analyses are also performed for 
potato crops, but the results remain at the pilot study stage. 
Research by Jimenez-Lopez, Ruge-Ruge and Jimenez-Lopez 
(2021) demonstrated innovative water management in potato 
cultivation by using deep learning algorithms to predict irrigation 
recommendations. Three models were analysed, including a one- 
dimensional convolutional neural network (1-DCNN), a LSTM 
and a hybrid convolutional LSTM. Climatic variables, such as 
temperature, precipitation, soil water content, and evapotran-
spiration, were collected daily for three years at two weather 
stations in the Usochicamocha irrigation area. The models were 
trained and validated using Python, with results showing that the 
CNN-LSTM model achieved the highest precision with MSE 
values of less than 0.067 and RMSE of less than 0.258. The model 
also achieved an R2 of 0.96. Ultimately, the results prove that deep 
learning techniques are an effective tool to support farmers in 
making irrigation optimisation decisions, ultimately leading to 
significant improvements in water management for potato crops. 

With the increasing demand for water, assessing the water 
footprint of potato crops has become crucial for sustainable 
agricultural water management. The goal of the research 
conducted by Abdel-Hameed et al. (2024) was to develop and 
compare four ML models: support vector regression (SVR), RF, 
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extreme gradient gain (XGB) and ANNs, to predict the blue water 
footprint (BWF) of potatoes in three governorates in the Nile 
Delta, Egypt. Meteorological variables, such as maximum and 
minimum temperature, relative humidity, rainfall, and water 
vapour deficiency, were used to determine the impact on BWF 
from 1990 to 2016. The analysis showed that the XGB model, 
especially in the Sc5 scenario that included water vapour 
deficiency and rainfall data, produced the best forecasting results. 

The results described above suggest that the developed 
models can significantly support decision-making in water 
management and the development of agricultural water use 
efficiency policies. Further research should focus on improving 
these models so that they can be applied to different climatic and 
environmental conditions. In this regard, the use of ML 
techniques in water footprint assessment is a promising approach 
for achieving sustainable agricultural development. 

MONITORING PLANT GROWTH AND DEVELOPMENT  
DURING THE GROWING SEASON 

Monitoring potato growth and development is key to achieving 
optimal yields and increasing agricultural efficiency. While 
traditional methods, such as manual inspections or laboratory 
analysis, have been widely used, they gradually give way to 
modern technologies, including artificial intelligence, which 
enables more precise and efficient monitoring. Algorithms are 
used to analyse data from various sources, including satellite 
imagery, drones, soil sensors, and video cameras, to provide 
a comprehensive assessment of plant growth. Vegetation indices, 
such as NDVI, are used to assess the health of crops by analysing 
their photosynthetic activity. AI-based growth models, such as 
neural networks (NNs) and machine learning (ML), can predict 
potential risks from diseases and pests, as well as growth disorders 
resulting from environmental stress. Growth analysis involves 
measuring plant height, biomass distribution, and number of 
leaves, enabling the optimisation of agronomic treatments such as 
irrigation, fertilisation, and crop protection. The data supports 
farmers in making more informed decisions, leading to increased 
yields while reducing production costs. Monitoring potato growth 
and development through remote sensing is based on the 
assessment of aboveground biomass (AGB), which provides 
information on growth, physiological conditions, and light use 
efficiency. The AGB is a key indicator for determining the 
nitrogen fertilisation index (NNI) and nitrogen status of the crop. 
Remote sensing makes it possible to measure AGB in a non- 
invasive way by analysing light reflection at specific wavelengths. 
This correlates with crop cover and biomass production 
parameters. Unmanned aerial vehicles (UAVs) are often used 
for seasonal monitoring of potato AGB, offering high spatial and 
temporal resolution. Hyperspectral UAV sensors are particularly 
effective in recording variability in plant cover structure. Plant 
height and cover texture are also key parameters in AGB 
modelling, and the use of light detection and ranging (LIDAR) 
technology enables precise estimation of canopy structure. The 
assessment of nitrogen and chlorophyll content in potato leaves is 
conducted using NIR and red-resolution reflectance, which 
supports fertilisation management. High-resolution satellite and 
ground data enable calibration and improvement of biomass 
models, whereas metrics such as chlorophyll IndexRedEdge 
(CIred-edge) and (chlorophyll absorption reflectance index)/(soil 

adjusted vegetation index) (TCARI/OSAVI) help assess leaf 
nitrogen status. By integrating these approaches and use of 
techniques, farmers can optimise production and resource 
efficiency in potato crops (Peng et al., 2021; Tenreiro et al., 
2021; Mukiibi et al., 2024). 

Monitoring the leaf area index (LAI) is an important 
parameter in assessing potato growth and development, as it 
directly relates to photosynthesis, biomass accumulation, and 
evapotranspiration. Remote sensing can be used to estimate LAI 
by utilising data from UAVs equipped with hyperspectral sensors 
and multispectral satellites. While no single platform can 
simultaneously provide high spectral, spatial and temporal 
resolution, research on combining different optical sensors on 
different platforms is yielding promising results. Ground-based 
sensors such as multispectral cameras and CropViev device are 
often used to calibrate UAV and satellite data. Models, such as 
PROSAIL, allow simulation of vegetation cover reflectance as 
a function of LAI. Empirical relationships between vegetation 
indices and LAI show varying levels of accuracy, typically in the 
R2 range of 0.52 to 0.95. Indices based on red and near-infrared 
bands, such as NDVI, are often used but can be less sensitive at 
high LAI values. Alternative indices that minimise the impact of 
soil reflectance are more suitable for accurate LAI assessment, 
making these techniques an indispensable tool for agronomic 
management (Mukiibi et al., 2024). 

The most popular vegetation index used in assessing potato 
growth and development is the NDVI. It is widely used since it 
allows assessment of plant health based on photosynthetic activity, 
as reflected in spectrometric changes in visible and near-infrared 
reflectance. The highest correlation of NDVI values with potato 
yield occurs during the tuber stage of the BBCH scale1, at the 
BBCH 41–49 stage, when plants reach maximum vegetative 
growth and full crown coverage. During the season, NDVI 
threshold values can range from 0.3, indicating early development, 
up to 0.9, indicating high photosynthesis and healthy plant cover. 
High NDVI values during the tuber formation stage (BBCH 41– 
49) are strongly correlated with potential tuber yield. At this stage, 
the maximum photosynthetic output is transported to developing 
tubers (Vreugdenhil et al., 2007). 

In addition to NDVI, other vegetation indices effectively 
support the assessment of potato growth and development. Soil- 
adjusted vegetation index (SAVI) and modified soil adjusted 
vegetation index (MSAVI) minimise the impact of soil, which is 
particularly useful at early growth stages. The green normalised 
difference vegetation index (GNDVI), with its green reflectance 
analysis, provides information on chlorophyll content, which is 
crucial for assessing plant health. The enhanced vegetation index 
(EVI), with its greater resistance to weathering, provides more 
accurate measurements in a variety of environments. These 
indices, often used in combination with the NDVI, provide 
a comprehensive picture of plant health to support decisions on 
fertilisation, irrigation and crop protection strategies (Huete, 

1 The BBCH-scale is used to identify the phenological plant 
development stages. The BBCH-scales series has been developed 
for a range of crop species, where similar growth stages of each 
plant are given the same code. The BBCH is the abbreviation 
reflecting the names of original stakeholders: “Biologische Bundes-
anstalt, Bundessortenamt und CHemische Industrie”. 
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1988; Chen, 1996; Politi, Cutler and Rowan, 2012; Delegido et al., 
2013; Xue and Su, 2017; Liu et al., 2022). 

Parameters related to plant growth and development, such 
as LAI, chlorophyll content, vegetative indices like NDVI and 
other spectral indices, are key to assessing potato health and 
growth rate. These indicators enable accurate predictions of tuber 
yield, which is important for optimising agricultural practices and 
increasing crop productivity. Despite the growing understanding 
of their importance, there is a shortage of scientific publications 
exploring the application of advanced ML techniques for 
estimating these parameters, in particular photosynthetic pro-
ductivity in potatoes. The use of such algorithms can improve the 
accuracy of yield forecasting and increase the efficiency of 
resource management in agriculture. Further research is needed 
to fully realise the ML potential in promoting sustainable potato 
farming. It is worth mentioning that some scientific studies have 
explored the use of ML in forecasting vegetation indices. Most of 
the parameters presented and discussed in this section are used in 
the development of predictive models, as discussed below (Luo 
et al., 2019; Luo et al., 2020; Mukiibi et al., 2024). 

CLASSIFICATION AND PREDICTION OF TUBER YIELD 

Predictive and classification models are becoming increasingly 
important in potato cultivation, helping to optimise productivity 
and sustainability. These models enable more accurate forecast-
ing by analysing historical weather, soil, and agronomic data. 
They also help identify potential risks, such as diseases and pests, 
enabling faster preventive responses. The models support 
farmers in making informed decisions about irrigation, fertilisa-
tion, and crop protection, leading to increased production 
efficiency. Intelligent systems can classify various plant traits, 
such as tuber size and quality, helping to select suitable planting 
materials. Introducing models into daily farming practices can 
also reduce costs through precise resource management. As 
a result, farmers can more effectively adapt to changing climatic 
and market conditions. 

The application of advanced analytical technologies in 
potato cultivation represents a key direction in the development 
of modern agriculture (Niedbała and Piekutowska, 2018; Hara, 
Piekutowska and Niedbała, 2021; Cravero et al., 2022; Barrios- 
Ulloa et al., 2023). AI-driven potato tuber yield forecasting has 
become an essential tool in modern agriculture. Pre-harvest 
forecasts are particularly valuable for efficient logistics planning 
and resource management, helping to minimise financial losses. 
Algorithms such as NNs and RFs analyse weather conditions and 
soil quality data. The most accurate models achieve prediction 
errors of just 5–10%, which is considered very good (Piekutowska 
et al., 2021; Kurek et al., 2023). 

Recent innovations in machine learning (ML) and deep 
learning (DL) have revolutionised potato yield forecasting, 
offering more accurate and detailed predictions. These algorithms 
use data collected by satellites, drones, and weather and soil 
sensors to identify anomalies and relationships in the data, 
increasing the precision of prediction models. A key strength of 
ML and DL is their ability to continuously learn and adjust 
forecasts based on new data, enabling allowing for rapid 
adaptation to changing agricultural conditions. Moreover, these 
models facilitate yield forecasting at the field and individual plant 
levels, which is essential for precise and targeted intervention. 

With access to detailed data, farmers can optimise watering, apply 
precision fertilisation and pest control, and improve productivity 
and efficiency in the long run. The integration of ML and DL in 
agriculture not only supports individual farmers but also affects 
the entire supply chain, stabilising the market and minimising the 
risk of food insecurity. However, implementing these technolo-
gies comes with challenges, such as the need for high quality and 
large amounts of data, and the interpretability of forecast results 
(Cao et al., 2021; Bali and Singla, 2022; El-Kenawy et al., 2024). 

The study by Piekutowska et al. (2021) developed linear and 
nonlinear models to predict tuber yields of three early potato 
varieties: ‘Arielle’, ‘Riviera’ and ‘Viviana’. The models were 
developed using 2010-2017 data from official experiments in 
northern and northwestern Poland. A linear model was created 
using multiple linear regression (MLR), while a non-linear model 
was based on ANNs, both designed to predict yields up to June 
20. These models used agronomic, phytophenological, and 
meteorological data, with their performance verified on indepen-
dent datasets. Validation included six measures of error, such as 
global relative approximation error (RAE), root mean square 
error (RMS), mean absolute error and mean percent absolute 
error (MAPE). Most of the models had MAPEs below 15%, and 
the NY1 neural model outperformed the RY1 regression model in 
terms of quality and accuracy of predictions. 

Gomez et al. (2019) developed a potato yield forecasting 
model using satellite remote sensing. They used data from 
Sentinel 2 satellites collected by the European Space Agency over 
three growing seasons, using different ML models. The analysis 
tested nine algorithms with different processing scenarios, based 
on spectral data from red, red-edge and infrared light bands. The 
regression quantile lasso (11.67% RMSE, R2 = 0.88 and 9.18% 
MAE) and leap backwards (10.94% RMSE, R2 = 0.89 and 8.95% 
MAE) models performed best after removal of variables with 
correlations above 0.5. In contrast, the SVM radial algorithm 
(11.7% RMSE, R2 = 0.93 and 8.64% MAE) performed better 
without feature selection, and the random forest model 
effectively predicted yields in Castilla y León (11.16% RMSE, 
R2 = 0.89 and 8.71% MAE). 

A study by Kurek et al. (2023) explored the application of 
ML methods to forecast yields of potatoes for French fries in 
Poland. They used extensive agronomic, climatic, soil, and 
satellite data from 36 commercial potato fields collected over 
five growing seasons (2018–2022). The data was used to develop 
three models: non-satellite, satellite, and hybrid. The non-satellite 
model, based on 85 traits, excluded vegetation indicators, while 
the satellite model included these indicators among 128 traits. 
The hybrid model, combining all available features, included 165 
features, making it the most comprehensive approach. The results 
showed that the hybrid model, particularly enhanced by detecting 
outliers using SVMs, achieved the lowest mean absolute 
percentage error (MAPE) of 5.85%, highlighting the effectiveness 
of integrating different data sources. In comparison, non-satellite 
and satellite models showed higher MAPE values, indicating their 
lower accuracy. Advanced data processing techniques, such as 
principal component analysis (PCA) and outlier detection 
methods (LOF and One-Class SVM), were crucial to optimising 
feature selection and improving forecast accuracy. 

A recent study on the use of artificial intelligence for potato 
tuber yield assessment examined the effectiveness of various 
predictive models in potato yield forecasting, focusing on ML 
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algorithms, such as gradient boosting and XGBoost, and deep 
learning models, including graph-based NNs (GNNs) and 
LSTMs. The models were evaluated using performance measures 
such as MSE, RMSE, and MAE to assess their accuracy. Gradient 
boosting achieved MSE of 0.03438 and R2 of 0.49168, while 
XGBoost showed a slightly higher MSE of 0.03583 and R2 of 
0.35106. As regards deep learning models, GNNs achieved MSE 
of 0.02363 and R2 of 0.51719, showing the best overall 
performance. Strong potential was demonstrated by LSTMs 
and GRUs, with mean squared errors (MSEs) of 0.03177 and 
0.03150, respectively. The ability of GNNs and LSTMs to capture 
complex spatio-temporal patterns contributes to their high 
accuracy. The study underscores the importance of advanced 
predictive models in making informed decisions and supporting 
sustainable agricultural practices in potato cultivation (El- 
Kenawy et al., 2024). 

Yield forecasting is a crucial aspect of modern agriculture, 
enabling informed crop management decisions and ensuring the 
stability of food production. Each year, new methods emerge that 
significantly improve the accuracy of yield forecasts. In particular, 
AI methods such as NNs, RFs and SVMs revolutionise the 
performance of prediction models. Deep learning algorithms, such 
as LSTM and graph-based NNs, are also widely used. Although 
other methods, such as linear regression, are also used, they 
mainly serve as benchmarks for evaluating the effectiveness of 
advanced AI techniques. With advanced data processing techni-
ques, these models are increasingly accurate, reaching minimum 
mean absolute percentage error (MAPE) of 5–6%. The results 
indicate that integrated AI approaches produce lower forecast 
errors, confirming their effectiveness. The development of these 
technologies is steadily improving prediction accuracy, opening up 
new opportunities in agricultural production management. 

Classification models play a key role in potato cultivation, 
enabling precise analysis of various aspects related to potato 
growth and variety identification. Research by Liu et al. (2020) 
used spectroscopic technology to classify potato growth stages. 
The experiments took place in China and covered various growth 
stages, such as tillering (S1), tuber formation (S2), tuberisation 
(S3), and ripening (S4). The SVM-based model achieved 
excellent results, showing 100% accuracy on the training set 
and 97.37% on the test set. 

A study by Khorramifar et al. (2021) used an electronic nose 
and chemometric methods, such as PCA, linear discriminant 
analysis algorithm (LDA), and ANN, to identify different potato 
varieties. These studies also highlighted the importance of 
classification, achieving accuracies of 100% for the LDA method 
and 96% for the ANN method, using nine sensors in laboratory 
settings. As technology develops, classification of potato varieties 
is becoming more complex yet more efficient. The analysis and 
classification of different growth stages and varieties of potato is 
of great importance in the context of crop management. In light 
of the increasing demand for food due to growing populations, 
the ability to accurately monitor and classify is invaluable in 
ensuring agricultural sustainability. Classification not only allows 
for better management of resources but also for early identifica-
tion of potential disease and pest threats. Classification models, 
such as CWT-SPA-SVM for spectroscopic analysis or chemo-
metric methods for variety identification, can significantly 
improve production efficiency. With modern technology, farmers 
are able to make more informed agronomic decisions, which 

supports sustainable development. In the face of changing 
climatic conditions and market demands, advanced classification 
models not only support farmers but are also crucial to the 
stability of the entire food supply chain. As a result, scientific 
approaches to classification are becoming the foundation of 
modern agriculture. 

STORAGE 

Artificial intelligence is transforming potato harvest and storage 
management, introducing new opportunities to optimise and 
increase the efficiency of the entire process. By analysing large 
data sets, such as soil conditions, weather, moisture levels, and 
previous yield data, ML models can predict the optimal harvest 
time to maximise yield and quality. Machine learning models, 
including regression, decision trees, and NNs, are ideal for 
predicting potato storage performance. Regression models 
identify relationships between variables and outcomes, decision 
trees offer intuitive visualisations of decision paths, and NNs, 
especially deep learning models, can handle complex patterns in 
large data sets, providing high-precision predictions (Cao et al., 
2021; Akhter and Sofi, 2022). 

In the context of storage, algorithms can monitor and 
analyse storage conditions, such as temperature and humidity, 
which helps keep potatoes in the best possible condition for 
longer periods. Machine learning can also predict potential issues, 
such as disease or rot, before they become serious threats, 
enabling early intervention (Jakubowski and Królczyk, 2020). 

A study by Khorramifar et al. (2023) explored the use of an 
electronic nose (e-nose) combined with ML techniques to predict 
potato shelf life. The study assessed changes in the quality of 
potatoes during storage by analysing sugar and carbohydrate 
content. It used various ML models, such as PCA, support vector 
machines, and ANNs. The results showed that quadratic 
discriminant analysis (QDA) and multivariate discriminant 
analysis (MDA) achieved more than 90% accuracy in classifying 
the quality of potatoes in storage facilities. This approach enabled 
effective monitoring of quality and reliable prediction of potato 
shelf life. 

Another interesting study by Coulibali, Cambouris, and 
Parent (2020) showed how ML can optimise potato storage 
conditions. The researchers developed predictive models using 
KNN algorithms, RFs, and NNs to determine the optimal levels of 
nitrogen, phosphorus, and potassium for high tuber quality and 
yield. The models took into account weather, soil, and land 
management data. The ML-based models outperformed tradi-
tional methods, offering more accurate predictions for medium- 
sized tubers and specific density. This enabled more precise 
fertiliser applications, better storage conditions and reduced losses. 

Potato storage control goes beyond disease assessment; it 
also involves managing germination (Di et al., 2024). The quality 
of potato tubers depends on maintaining several parameters at 
appropriate levels during storage. One of these parameters is 
germination activity, which begins in the meristematic regions of 
the tubers (eyes). Uncontrolled sprouting activity is a significant 
issue, leading to a shortened shelf life and increased sugar 
content, adversely impacting the commercial value of both seed 
tubers and processed potato products, such as fried goods. 
A study by Rady et al. (2020) compared the capabilities of three 
different optical systems: (1) visible/near-infrared (Vis/NIR) 
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interactive spectroscopy, (2) Vis/NIR hyperspectral imaging, 
(3) NIR transmittance, as well as ML methods in detecting 
potato germination activity based on the number of embryonic 
leaves (LC). The study was conducted on Frito Lay 1879 and 
Russet Norkotah varieties stored at different temperatures. The 
developed classification models analysed both varieties together 
and classified tubers as showing high or low germination activity. 
Measurements were made on both whole tubers and sectioned 
samples to evaluate the impact on identifying germination 
activity. Sequential forward selection was used to select 
wavelengths, while classification was performed using the KNN 
method, least squares discriminant analysis and independent 
modelling analogy. The highest classification accuracy values 
were obtained for the hyperspectral imaging system, reaching 
87.5% and 90% for the sectioned and whole samples, respectively. 
The study of various optical techniques and ML methods is a first 
step towards developing a portable optical device for early 
detection of germination activity, which can significantly enhance 
potato storage management. 

Implementing ML systems in agriculture requires high- 
quality data and knowledge of ML and data science techniques. 
Future efforts should focus on improving the accuracy of models, 
integrating IoT sensors, and creating user-friendly interfaces for 
farmers (Osipov, Filimonov and Suvorov, 2021). In addition, 
these technologies can help manage logistics by optimising 
transportation and delivery volumes, ultimately reducing costs 
and minimising losses. Integrating ML into potato harvest and 
storage management allows for more informed decision-making, 
leading to a more sustainable and efficient agricultural produc-
tion process (Kutyauripo, Rushambwa, and Chiwazi, 2023). 

CHALLENGES AND FUTURE DIRECTIONS  
OF DEVELOPMENT 

Artificial intelligence offers opportunities for major transforma-
tion in agriculture, particularly in crop production, increasing 
productivity, sustainability, and resource management. Potato 
cultivation, a staple food crop worldwide, could benefit greatly 
from AI innovations. However, the widespread adoption of 
artificial intelligence in this field comes with several challenges, 
including economic, educational, and technological barriers. 

The most important of these challenges is the significant 
financial investment required to implement AI technology in 
potato cultivation. Precision farming tools, such as AI-based 
drones and smart sensors used to monitor crop health and 
optimise inputs, can be too expensive for small and medium-sized 
farmers. The high initial costs associated with these technologies 
may discourage their use, especially in developing regions where 
financial resources are limited. Removing these barriers through 
subsidies, financial incentives, and shared funding models is 
crucial for the broader integration of AI. 

Successful implementation of AI technologies in agriculture 
requires a workforce skilled in both agricultural practices and 
data science. Currently, there is a significant education gap, as 
many farmers lack the technical knowledge to effectively use AI 
tools. To bridge the gap, it is necessary to develop training 
programmes and educational initiatives to equip farmers with 
skills necessary to fully utilise the potential of artificial 
intelligence. This requires cooperation between academic institu-

tions, government agencies, and technology companies to develop 
and implement accessible educational programmes. 

Moreover, the availability of artificial intelligence technol-
ogy is unevenly distributed across regions, contributing to 
disparities in agricultural productivity. While advanced technol-
ogies, such as ML algorithms for crop prediction and automated 
irrigation systems, are mainly concentrated in developed 
countries, regions with limited access remain at a disadvantage. 
Efforts to democratise artificial intelligence technologies and 
make them more accessible to all potato producers, regardless of 
geographic location, are essential to ensure  equitable benefits. 

Future research should focus on developing affordable AI 
solutions tailored to the needs of potato farmers, especially those 
operating on a smaller scale. Innovative low-cost sensors, open 
source AI platforms, and scalable technologies can help reduce 
financial barriers and make AI tools more accessible to a variety 
of agricultural operations. Joint efforts involving governments, 
non-governmental organisations (NGOs), and the private sector 
can facilitate the development and dissemination of these cost- 
effective solutions. In parallel with the development of AI, the 
educational resources available to farmers should also be 
expanded. Improved educational programmes, such as online 
training modules, workshops, and field demonstrations, should 
be developed to teach farmers how to effectively integrate 
artificial intelligence into their daily operations. By fostering 
a culture of continuous learning and adaptation, these pro-
grammes will enable farmers to realise the full potential of AI 
technology. Promoting global cooperation in accessing AI 
technologies can help bridge the gap between high-tech and 
developing regions. Initiatives focused on technology transfer, 
knowledge sharing, and international research partnerships can 
facilitate widespread adoption of AI in potato farming around the 
world. By sharing best practices and innovations, the global 
agricultural community can increase resilience and productivity 
of potato crops around the world. While integrating artificial 
intelligence into the potato crop comes with challenges related to 
cost, education and technology availability, these can be 
addressed through strategic initiatives and collaboration. 

As artificial intelligence continues to revolutionise crop 
production, its thoughtful application to potato cultivation can 
lead to sustainable agricultural practices that meet global food 
demand. Future research and policy efforts should prioritise 
making artificial intelligence tools available and affordable, 
ensuring that all farmers benefit from these advanced technol-
ogies (Cambouris et al., 2014; Sewell et al., 2017; Taneja et al., 
2023; El-Kenawy et al., 2024; Elshaikh, Elsheikh and Mabrouki, 
2024). 

TECHNOLOGICAL AND FINANCIAL BARRIERS  
FOR SMALL PRODUCERS INIMPLEMENTING AI TECHNOLOGY 

IN POTATO CULTIVATION 

The implementation of AI technology in potato cultivation by 
small-scale producers faces a number of technological and 
financial barriers that can hinder the adoption of the innovation. 
First, the complexity of the technology poses a major challenge, as 
many small farms lack sufficient knowledge of advanced systems 
such as ML or data analytics. This complexity can be over-
whelming for farmers, discouraging them from using new 
solutions. In addition, the lack of adequate infrastructure, such 
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as high-speed internet or sensors, is a barrier that limits the ability 
to collect and analyse data needed to use AI effectively. 

Integrating new technologies with existing farm manage-
ment systems can also be a challenge. Small farms may find it 
difficult to implement innovations that are not compatible with 
their existing practices. Introducing new technologies involves 
steep learning curve, and as such can also be time-consuming. 
Farmers may need significant educational support to successfully 
adopt new tools. From a financial perspective, high implementa-
tion cost is a major obstacle. The upfront expenses associated 
with purchasing hardware, software, and implementing AI 
technologies can be prohibitive for small producers. Additionally, 
small farms often have difficulty obtaining financing to invest 
into innovative technologies. Traditional financial institutions 
may be reluctant to lend to projects perceived as high risk, further 
limiting access to capital. Limited budget adjustments on small 
farms mean that producers may be reluctant to experiment with 
new technologies. Many of these farms focus on short-term 
profits, which can lead them to view AI investments as 
unprofitable. While the implementation of AI technologies 
typically yields long-term benefits, it requires a change in 
thinking and approach to investment. To overcome these 
obstacles, it will be crucial to provide access to education, 
financial support, and the creation of partnership programmes to 
integrate innovative solutions into everyday farming practices. 
Collaboration between governments, NGOs, and the private 
sector is of paramount importance to enable small producers to 
benefit from the potential of AI in their operations. The 
development of these technologies and their effective implemen-
tation can bring significant benefits to small-scale potato 
producers, as well as contribute to the overall sustainability of 
agriculture (Wakchaure, Patle, and Mahindrakar, 2023; Zavodna, 
Überwimmer and Frankus, 2024). 

CONCLUSIONS 

The integration of artificial intelligence in crop production, 
particularly in potato cultivation, represents transformative 
potential in both economic and ecological spheres. Several key 
points were highlighted during this discussion, underscoring the 
significant impact AI technologies can have on improving 
agricultural practices. The primary conclusion is the ability of 
AI to optimise yield prediction through advanced data analysis, 
enabling farmers to make better-informed decisions. Machine 
learning models can analyse huge data sets – from historical yield 
records to real-time weather patterns – providing predictive 
insights that improve planning and resource allocation. This 
optimisation contributes directly to increased productivity, 
reduced waste, and ultimately improved profitability for farmers. 
Moreover, AI technologies, such as precision farming tools, play 
a key role in resource management. By enabling the precise 
application of water, fertiliser, and pesticides, these tools not only 
improve the quality of crops and yields but also reduce the 
environmental impact of agriculture. Artificial intelligence-based 
irrigation and nutrient management systems are an example of 
how technology can align agricultural practices with sustainable 
ecological principles, minimising excessive use and runoff of 
agrochemicals. From an economic standpoint, the application of 
AI to potato cultivation can contribute to significant cost 

reductions. Automating labour-intensive tasks, such as planting, 
monitoring, and harvesting, with AI-based robotics can reduce 
labour costs and mitigate labour shortages. In addition, decision 
support systems that provide insights into market trends and crop 
inventories which can help growers optimise sales strategies and 
improve market competitiveness. 

From an environmental perspective, artificial intelligence 
contributes to more sustainable farming practices. Precise 
monitoring of crop and soil health reduces reliance on chemicals, 
supports biodiversity, and improves soil health. Additionally, 
increased productivity supports the conservation of natural 
resources such as water, which is increasingly important in the 
context of climate change and global water scarcity. 

In summary, the application of artificial intelligence in 
potato cultivation offers myriad benefits, from increasing 
economic efficiency to supporting environmentally sustainable 
practices. As these technologies continue to evolve, they hold the 
promise of not only transforming traditional cultivation methods 
but also contributing to global sustainability efforts in agriculture. 
The future of AI in agriculture looks promising, with the potential 
to usher in a new era of intelligent, resilient, and environmentally 
friendly agricultural systems. 
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