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Abstract:  The increasing adoption of solar power as a sustainable energy source necessitates more efficient and reliable 
methods for optimising and maintaining solar power generating systems. Traditional approaches to assessing and 
managing these systems often rely on static models and manual interventions, which can be inefficient and fail to 
account for dynamic environmental conditions. In this study, we propose a novel framework for the assessment and 
optimisation of solar power systems using modern machine learning techniques. Our approach benifits advanced 
predictive maintenance, real-time energy yield optimisation, and enhanced energy forecasting models, resulting in 
significant improvements in system efficiency and reliability. Specifically, the predictive maintenance system, driven by 
machine learning algorithms, was able to reduce system downtime by 29.88% compared to traditional reactive 
maintenance methods. The real-time energy yield optimisation, leveraging dynamic data inputs, increased energy 
capture efficiency by 14.78% over standard static models. Additionally, our enhanced energy forecasting models 
demonstrated a 25.12% improvement in accuracy, significantly outperforming conventional forecasting techniques. 
These innovations enhance the operational efficiency of solar power systems, and contribute in their long-term 
sustainability and economic viability. The integration of machine learning into solar power management enables 
proactive decision-making, adaptive control strategies, and more accurate performance predictions. As a result, our 
proposed framework offers a practical and scalable solution to meet the growing demands of the renewable energy 
sector and supports the global transition toward cleaner and more resilient energy infrastructures.  

Keywords: climate change, energy forecasting, machine learning, predictive maintenance, solar power, system 
optimisation 

INTRODUCTION 

Human development activities fill the Earth’s atmosphere with 
carbon dioxide and other greenhouse gases and cause global 
warming. Burning of fossil fuels (coal, wood and natural gas) is 
one of the main causes of increasing greenhouse gas emissions. 
The result of such a disturbance in the natural cycle of the Earth 
creates waves of scorching heat and heavy rains that lead to 
floods, landslides and droughts. The continuous increase in the 

temperature of the Earth’s climate is called global warming or 
climate change, and it is a serious problem that threatens the 
world. Therefore, the need for renewable energy sources is felt 
more than decades ago. Among many renewable energy sources, 
solar energy has been considered due to its abundant presence in 
nature, so that solar power plants can be used to meet the high 
demand for electricity without emitting greenhouse gases. 

Solar power has emerged as one of the most critical 
components of the global shift towards sustainable energy 
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systems (Kamińska and Kazak, 2023; Adelekan et al., 2024). As 
concerns about climate change and the depletion of fossil fuel 
resources intensify, the transition to renewable energy sources has 
become an urgent priority (Nyambuu and Semmler, 2023; Petryk 
and Adamik, 2023). Solar energy, in particular, offers a clean, 
abundant, and increasingly cost-effective solution to meet the 
world’s growing energy demands (Tryngiel-Gać et al., 2023; Wu 
et al., 2023). Unlike fossil fuels, solar power generates electricity 
without emitting greenhouse gases, making it a cornerstone in 
efforts to reduce carbon footprints and combat global warming 
(Daudu et al., 2024). Moreover, technological advancements have 
significantly reduced the cost of solar panels and improved their 
efficiency, leading to widespread adoption across both developed 
and developing nations (Feng, He and Ma, 2022). As countries 
strive to meet ambitious renewable energy targets, solar power is 
expected to play a pivotal role in diversifying energy portfolios, 
enhancing energy security, and driving sustainable economic 
growth (Yazdandoost and Yazdani, 2024). In this context, 
optimising the performance and reliability of solar power systems 
is not only crucial for maximising energy production but also for 
ensuring the long-term viability and scalability of solar energy as 
a key contributor to global energy sustainability (Ahmadizadeh 
et al., 2024). 

Despite the growing adoption of solar power, traditional 
methods for assessing and optimising solar power systems 
present significant limitations that hinder their full potential (Al- 
Shahri et al., 2021). These conventional approaches often rely on 
static models and manual processes that fail to account for the 
dynamic and complex nature of solar energy production (Vo 
et al., 2020). For instance, static models typically use fixed 
assumptions about weather patterns, solar irradiance, and system 
performance, which can lead to inaccurate predictions and 
suboptimal decision-making (Sansine et al., 2022). Moreover, 
manual interventions in system monitoring and maintenance are 
time-consuming and prone to human error, resulting in 
increased downtime and reduced efficiency (Kayalvizhi et al., 
2024). These methods also struggle to adapt to changing 
environmental conditions, such as fluctuating weather patterns 
or unexpected system malfunctions, which are crucial for 
maintaining consistent energy output (Reynders et al., 2014). 
As a result, the efficiency, reliability, and economic viability of 
solar power systems are often compromised, limiting their 
effectiveness as a sustainable energy solution (Al-Rawi, Bicer and 
Al-Ghamdi, 2023). The need for more adaptive, precise, and 
automated methods is evident, driving the exploration of modern 
technologies, such as machine learning, to overcome these 
challenges and enhance the performance of solar power systems 
(Šenk et al., 2024). 

The primary aim of this paper is to evaluate the effectiveness 
of modern machine learning techniques in enhancing the 
performance and reliability of solar power systems. By integrating 
advanced algorithms into the assessment and optimisation 
processes, this study seeks to address the limitations inherent in 
traditional methods, offering a more dynamic and precise 
approach to managing solar energy production. The research 
focuses on how machine learning can improve key aspects such as 
predictive maintenance, real-time energy yield optimisation, and 
accurate energy forecasting. Through a comprehensive analysis, 
the paper demonstrates how these innovative techniques can 
significantly reduce system downtime, increase energy capture 

efficiency, and improve the accuracy of production forecasts, 
ultimately contributing to the greater efficiency and sustainability 
of solar power systems. 

MATERIALS AND METHODS 

DATA COLLECTION 

In this study, data collection was a critical component to ensure 
the accurate assessment and optimisation of solar power systems 
using machine learning techniques. Various types of data were 
gathered, including historical and real-time weather data, system 
performance metrics, and environmental factors. Weather data, 
which encompassed parameters such as solar irradiance, tem-
perature, humidity, and wind speed, was obtained from reputable 
meteorological databases and local weather stations near the solar 
installations. System performance metrics, including power 
output, voltage, current, and operational status of the solar 
panels and inverters, were collected directly from the monitoring 
systems of the solar power installations. Additionally, data on 
environmental factors such as shading, dust accumulation, and 
panel orientation were recorded through sensors and periodic site 
inspections. These diverse data sources provided a comprehensive 
dataset, enabling the development of robust machine learning 
models that accurately reflect the operational conditions of the 
solar power systems. To ensure the gradient boosting machines 
(GBM) model’s consistent performance under extreme weather 
conditions, weather-specific features such as solar irradiance, 
temperature, humidity, and wind speed were carefully incorpo-
rated into the dataset. These features allowed the model to 
account for the impact of fluctuating and extreme environmental 
conditions on system performance. Additionally, the model was 
tested using datasets that included a wide range of environmental 
scenarios, such as high temperatures, low irradiance during 
cloudy days, and strong wind events. This approach ensured that 
the GBM model could adapt its predictions and optimisations 
effectively across varying and challenging weather conditions. 
The data collected was then used to train, validate, and test the 
machine learning algorithms employed in the study, ensuring that 
the findings were grounded in real-world conditions (Sohkhlet 
and Goswami, 2022). 

DATA PREPROCESSING 

The data collected underwent several preprocessing steps to 
ensure its suitability for machine learning models. Initially, the 
data was cleaned to address any inconsistencies or missing 
values. Missing data points were handled using interpolation 
methods, where linear interpolation was applied for time-series 
data, and mean substitution was used for sporadic gaps. 
To handle missing or incomplete data in real-time scenarios, 
imputation techniques were employed during preprocessing. For 
time-series data, linear interpolation was applied to maintain 
temporal consistency, while mean substitution was used for 
sporadic missing values. Additionally, advanced methods such as 
k-nearest neighbours (KNN) imputation were tested for datasets 
with complex patterns, ensuring that the model could operate 
reliably even in the presence of incomplete inputs. These 
techniques enhanced the robustness of the GBM model, 
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particularly in real-time applications where data gaps are 
common. Outliers were identified through statistical analysis, 
particularly by using the interquartile range (IQR) method, and 
were either corrected or removed based on their impact on the 
overall dataset. Subsequently, the data was normalised to 
standardise the range of independent variables, which is essential 
for improving the performance and convergence speed of 
machine learning algorithms. Min-max normalisation was 
employed, where each feature xnormal was rescaled to a range 
between 0 and 1 using Equation (1) (Molajou et al., 2024): 

xnormal ¼
xi � xmin

xmax � xmin

ð1Þ

where: xmin and xmax = the minimum and maximum values of the 
feature, respectively. 

This process ensured that all input features contributed 
equally to the model’s learning process, preventing any single 
feature from disproportionately influencing the results. Finally, 
the data was divided into training, validation, and testing sets, 
with an 80-10-10 split, respectively. To safeguard against potential 
inaccuracies in real-time data inputs, rigorous preprocessing and 
validation steps were implemented. Data collected from sensors 
and monitoring systems were subjected to real-time error checks 
to detect anomalies or inconsistencies. Missing or anomalous 
values were handled using interpolation methods, while outliers 
were identified and addressed through statistical analysis, such as 
the interquartile range (IQR) method. Additionally, periodic 
validation of data accuracy was performed by cross-referencing 
real-time inputs with historical datasets and external benchmarks, 
such as meteorological databases. These measures ensured that 
the data fed into the GBM model was reliable, minimising the risk 
of inaccuracies affecting the model’s performance. 

This division was performed to allow for the tuning of 
model parameters, evaluation of model performance, and the 
prevention of overfitting. The training set was used to train the 
machine learning models, the validation set was employed to fine- 
tune hyperparameters, and the testing set provided an unbiased 
evaluation of the final model’s performance. These preprocessing 
steps were crucial in preparing the dataset for effective model 
training and ensuring the robustness of the study’s findings. 

GRADIENT BOOSTING MACHINES (GBM) 

The GBM was chosen for this study due to its strong performance 
in handling complex, nonlinear relationships within large 
datasets, which are characteristic of solar power systems. The 
reason for selecting GBM for this study was also its ability to 
balance interpretability and accuracy, making it well-suited for 
applications in solar power system optimisation. While alter-
native boosting techniques like XGBoost or LightGBM offer 
enhanced computational efficiency, GBM’s relatively straightfor-
ward implementation and iterative error-correction process 
provided greater clarity in understanding feature contributions 
and decision-making. This interpretability was crucial for 
aligning the model’s outputs with operational insights, ensuring 
that the results could be effectively applied to real-world energy 
management scenarios. The GBM was particularly suitable for the 
tasks of predictive maintenance, real-time optimisation, and 
energy forecasting because of its ability to iteratively improve 

model accuracy by correcting the errors of previous models in the 
ensemble. This approach allowed for the creation of highly 
accurate models that could effectively manage the dynamic and 
variable conditions typical in solar power generation. For 
predictive maintenance, GBM was implemented to analyse 
historical system performance metrics and identify patterns 
indicative of potential failures. The model was trained on labelled 
datasets where previous system failures were documented, 
enabling it to learn the subtle indicators of upcoming issues. 
This resulted in a significant reduction in system downtime, as 
the model could predict failures with high accuracy and allow for 
proactive maintenance. In the context of real-time energy yield 
optimisation, GBM was utilised to continuously adjust opera-
tional parameters based on incoming data such as weather 
conditions and system performance. By leveraging the model’s 
ability to process dynamic inputs, it was possible to optimise 
energy capture in real-time, leading to an improvement in 
efficiency. The model was trained using a combination of 
historical and real-time data, allowing it to adapt to changing 
environmental conditions and optimise the system’s performance 
dynamically. For energy forecasting, GBM was employed to 
predict future energy outputs based on a wide range of input 
variables, including weather forecasts and historical production 
data. The model was trained using extensive historical data and 
validated against actual energy output, resulting in a significant 
improvement in forecasting accuracy. The iterative nature of 
GBM allowed for the integration of new data over time, 
continually refining its predictions and enhancing the reliability 
of the forecasts. The hyperparameters of the GBM model were 
tuned using a grid search approach combined with cross- 
validation. This process involved systematically testing various 
combinations of parameters, such as learning rate, maximum 
depth, and number of estimators, to identify the settings that 
minimised validation error. Cross-validation ensured the robust-
ness of the selected parameters by evaluating model performance 
across multiple data splits, reducing the risk of overfitting and 
improving generalisability. The implementation of GBM in these 
three critical areas provided a robust and modern approach to 
improving the overall efficiency and reliability of solar power 
systems, demonstrating its effectiveness in overcoming the 
limitations of traditional methods (Mitrentsis and Lens, 2022). 

EVALUATION METRICS 

To evaluate the performance of GBM model, key metrics such as 
accuracy, precision, and system efficiency improvement were 
used. These metrics were chosen due to their relevance in 
assessing the effectiveness of predictive maintenance, real-time 
optimisation, and energy forecasting within solar power systems. 
Accuracy was employed as a primary metric to evaluate how well 
the model predicted outcomes across all tasks. For predictive 
maintenance, accuracy was defined as the proportion of correctly 
identified system failures and non-failures, calculated using 
Equation (2) (AlKandari and Ahmad, 2024): 

A ¼
TP þ TN

TP þ TN þ FP þ FN
ð2Þ

where: A = accuracy, TP = true positives, TN = true negatives, 
FP = false positives, FN = false negatives. 
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A higher accuracy indicated that the model was effective in 
predicting maintenance needs and preventing unnecessary system 
downtime. Precision was also used to measure the model’s 
performance, particularly in predictive maintenance, where it was 
crucial to minimise false alarms. Precision (P) was calculated acc. 
to Equation (3) (Shouman, 2024): 

P ¼
TP

TP þ FP
ð3Þ

This metric provided insight into the model’s ability to 
correctly identify actual failures, ensuring that maintenance 
efforts were both timely and accurate. For system efficiency 
improvements, the metric focused on the percentage increase in 
energy capture and the reduction in downtime. The improvement 
in energy capture efficiency was quantified by comparing the 
energy output under GBM-driven optimisation against the output 
from traditional static models. The percentage improvement was 
calculated acc. to Equation (4) (Hu et al., 2024): 

EI ¼
Oopt � Ostat

Ostat

100% ð4Þ

where: EI = efficiency improvement expressed as a percentage, 
Oopt = output from the optimized model, and Ostat = output from 
the static (baseline) model. 

These evaluation metrics were instrumental in demonstrat-
ing the effectiveness of the GBM model across various aspects of 
solar power system management, providing a clear indication of 
the enhancements achieved through the application of modern 
machine learning techniques. 

CASE STUDY 

The city of Basra was selected due to its high solar irradiance and 
favourable climatic conditions, making it an ideal location for 
assessing the effectiveness of solar power systems. Basra, located 
in the southern part of Iraq, experiences a hot desert climate with 
long, sunny periods throughout the year, which is conducive to 
solar energy generation. This region was chosen to illustrate the 
practical implications of integrating machine learning techniques 
into solar power optimisation and forecasting in a real-world 
setting with significant solar potential. The significance of this 
study in Basra lies in the city’s energy demands and the potential 
for solar power to meet a substantial portion of those needs. Basra 
is one of Iraq’s major economic hubs, with a growing population 
and industrial sector that places a high demand on energy 
resources. Given the city’s high solar potential, optimising solar 
power generation using modern machine learning techniques can 
play a crucial role in enhancing energy security, reducing 
dependence on fossil fuels, and contributing to the sustainability 
goals of the region. To conduct the case study, various types of 
data were collected and analysed. This included climatic and 
meteorological data such as solar irradiance, temperature, 
humidity, and wind speed, as well as system performance metrics 
like energy output and system efficiency. The data were gathered 
from the Iraqi Meteorological Organization and Seismology 
(IMOS) and local solar power installations over a period of one 
year. The data were then processed and normalised to ensure 
consistency and accuracy in the subsequent machine learning 
models (Tab. 1). 

These data were utilised to train and validate the GBM 
model for predictive maintenance, real-time energy yield 
optimisation, and enhanced energy forecasting. The specific 
focus on Basra allowed for a detailed examination of how 
machine learning can be leveraged to optimise solar power 
systems in environments with high solar exposure but also 
challenging climatic conditions, such as extreme heat, which can 
affect system performance. In conclusion, the case study of Basra 
illustrates the potential for advanced machine learning techniques 
to significantly enhance solar power generation in regions with 
high solar potential. The results of this study not only contribute 
to the local energy strategy of Basra but also provide insights that 
can be applied to similar regions globally, where solar energy can 
be a major contributor to the energy mix. 

RESULTS AND DISCUSSION 

PREDICTIVE MAINTENANCE SYSTEM 

The implementation of the predictive maintenance system using 
gradient boosting machines (GBM) resulted in a significant 
reduction in system downtime, specifically a 29.88% decrease 
compared to traditional reactive maintenance methods. This 
improvement underscores the efficacy of predictive maintenance 
in enhancing the reliability and operational efficiency of solar 
power systems. 

The average downtime per year was reduced from 120 h 
with traditional methods to 84.2 h with the predictive 
maintenance system. This reduction can be attributed to the 
model’s ability to accurately predict potential failures before they 
occur, allowing for preemptive interventions that prevent 
unscheduled downtime. The 29.88% reduction in downtime has 
profound implications for the overall efficiency and profitability 
of solar power systems. In comparison, traditional rule-based 
models, which rely on fixed thresholds, lacked the adaptability to 
predict failures under dynamic environmental conditions, under-
scoring GBM’s superior ability to reduce downtime in real-time 
scenarios. Reduced downtime translates directly into increased 
energy production, as the systems remain operational for longer 

Table 1. Key climatic and meteorological data collected for Basra 

Parameter Unit Average value 

Solar irradiance1) kWh∙m–2∙day–1 5.85 

Average temperature1) °C 28.7 

Maximum tempera-
ture1) °C 50.2 

Minimum tempera-
ture1) °C 14.1 

Average humidity1) % 38.4 

Average wind speed1) m∙s–1 3.7 

Annual energy out-
put2) kWh∙year–1 1,635,000 

System efficiency2) % 17.5  

Source: own elaboration based on data of: 1) Iraqi Meteorological 
Organization and Seismology (IMOS), 2) local solar installation. 
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periods. This is particularly crucial for solar power installations, 
where maximising energy capture is essential for achieving 
financial viability and meeting energy production targets. Ad-
ditionally, the predictive maintenance system minimises the need 
for emergency repairs, which are often more costly and disruptive 
compared to scheduled maintenance. By identifying and addres-
sing issues before they escalate, the system also extends the lifespan 
of critical components, thereby reducing the long-term operational 
costs. This reduction in downtime and proactive approach to 
maintenance translate into significant cost savings for operators, 
with a 29.88% downtime reduction avoiding substantial revenue 
losses and unscheduled emergency repairs, which are often 
safeguard more costly than planned maintenance interventions 
according to industry data. Furthermore, the implementation of 
GBM for predictive maintenance has enhanced system reliability, 
a key factor in the deployment of solar power systems on a larger 
scale. Reliable energy production is vital for integrating solar power 
into the broader energy grid, where fluctuations in output can 
cause instability. The ability of GBM to provide accurate 
maintenance predictions ensures that solar power systems can 
maintain consistent output, even in the face of potential system 
failures. The results from this study demonstrate that predictive 
maintenance, when supported by advanced machine learning 
models like GBM, offers substantial improvements over traditional 
maintenance approaches. The reduction in downtime not only 
enhances the immediate operational efficiency of solar power 
systems but also contributes to their long-term sustainability by 
ensuring that systems can operate reliably and efficiently over 
extended periods. These findings highlight the critical role of 
modern machine learning techniques in advancing the capabilities 
of renewable energy systems and underscore the importance of 
continued innovation in this field. 

Feature importance analysis in the study revealed that solar 
irradiance and temperature were the most critical parameters, as 
expected. However, it also highlighted unexpected factors, such as 
wind speed, which showed higher relevance in predictive 
maintenance due to its correlation with structural stress, and 
dust accumulation, which significantly influenced real-time 
optimisation. These insights underscore the importance of feature 
analysis in identifying non-obvious contributors to solar power 
system performance. 

REAL-TIME ENERGY YIELD OPTIMISATION 

The implementation of real-time energy yield optimisation using 
GBM resulted in a 14.78% improvement in energy capture 
efficiency when compared to conventional static models. This 
improvement is particularly significant in the context of solar 
power systems, where maximising energy output is critical for 
both economic viability and the effective integration of solar 
energy into the power grid. The comparison of energy capture 
efficiency between conventional static optimisation methods and 
the real-time optimisation approach enabled by GBM is 
illustrated in Figure 1. 

As shown in Figure 1, the conventional static models, which 
rely on predefined parameters and lack the ability to adapt to 
changing environmental conditions, achieved an energy capture 
efficiency of 82.5%. In contrast, the real-time optimisation 
approach using GBM, which continuously adjusts operational 
parameters based on incoming data such as weather conditions 

and system performance, resulted in a significantly higher energy 
capture efficiency of 94.6%. The 14.78% improvement in energy 
capture efficiency demonstrates the effectiveness of real-time 
optimisation in responding to the dynamic nature of solar power 
generation. Unlike static models, which are limited by their 
inability to adapt to fluctuations in sunlight intensity, tempera-
ture, and other environmental factors, the GBM-driven optimisa-
tion method can rapidly adjust to these changes, ensuring that the 
system operates at peak efficiency throughout the day. This 
adaptability is crucial for solar power systems, where energy 
output can vary significantly depending on weather conditions 
and the time of day. The GBM model achieves a balance between 
accuracy and runtime, making it well-suited for real-time 
applications compared to alternatives like random forests and 
neural networks. Unlike neural networks, which require sig-
nificant computational resources and longer training times, 
GBM’s iterative process optimises runtime while maintaining 
high accuracy. Though slightly more computationally demanding 
than random forests, GBM better captures nonlinear relationships 
and subtle patterns. Its efficiency and adaptability make it 
a compelling choice for dynamic scenarios like real-time energy 
optimisation, though careful hyperparameter tuning is essential 
for optimal performance. 

The implications of this improvement are substantial. 
A 14.78% increase in energy capture efficiency translates directly 
into higher energy output without the need for additional solar 
panels or infrastructure. This issue enhances the return on 
investment for solar power installations, and contributes to the 
broader goal of increasing the share of renewable energy in the 
global energy mix. Moreover, by optimising energy capture in 
real-time, solar power systems can provide more consistent and 
reliable energy output, reducing the strain on energy storage 
systems and improving the overall stability of the power grid. 

The real-time energy yield optimisation enabled by GBM 
offers a significant advancement over conventional static models, 
providing a robust solution for maximising the efficiency of solar 
power systems. The 14.78% improvement in energy capture 
efficiency highlights the potential of modern machine learning 
techniques to transform the operational management of renew-
able energy systems, making them more efficient, reliable, and 
economically viable. The GBM-based approach demonstrated for 

Fig. 1. Comparison of forecasting accuracy between traditional techniques 
and GBM-based real-time optimisation; GBM = gradient boosting 
machines; source: own study 
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energy yield optimisation in solar power systems can potentially 
be adapted to hybrid renewable energy systems. By incorporating 
data from multiple energy sources, such as wind or hydropower, 
the model could dynamically optimise energy capture and 
distribution across the hybrid system. 

This would require the combination of additional data 
inputs specific to each energy source, such as wind speed or water 
flow rates, allowing GBM to handle the complexities of hybrid 
system interactions while maintaining its adaptability and 
predictive capabilities. The 14.78% energy efficiency improve-
ment observed in this study is likely scalable to larger solar farms 
or microgrid systems, given the data-driven nature of the GBM 
model. As data volumes increase with the size and complexity of 
such systems, GBM’s iterative learning process and ability 
to handle high-dimensional datasets make it well-suited for these 
scenarios. However, the computational demands of processing 
larger datasets and the need for enhanced infrastructure to 
support real-time data collection and analysis must be considered. 

Future studies should investigate the model’s scalability by 
applying it to larger installations, ensuring that the efficiency gains 
observed in smaller setups can be replicated at scale. These findings 
underscore the importance of continued innovation in this field, as 
the demand for sustainable energy solutions continues to grow. 

ENHANCED ENERGY FORECASTING 

The application of GBM in energy forecasting resulted in 
a substantial 25.12% improvement in accuracy compared to 
conventional forecasting techniques. This enhancement is critical 
for optimising the performance of solar power systems, as precise 
energy forecasting is essential for effective energy management, 
grid stability, and long-term planning. A comparison between the 
forecasting accuracy of the GBM-based model and traditional 
forecasting methods is illustrated in Figure 2. 

As illustrated in Figure 2, the forecasting accuracy increased 
from 74.5% with conventional techniques to 93.2% with the GBM- 
based model. This significant improvement was achieved by the 
GBM’s capability to process and integrate dynamic data inputs, 
such as real-time weather conditions and system performance 
metrics, which traditional models were unable to capture 
effectively. By incorporating real-time data, the GBM model 
adjusted its predictions more precisely, leading to a more accurate 
representation of expected energy yields. The implications of this 
improved forecasting accuracy are profound. Accurate energy 
forecasts allow solar power operators to better align energy 
production with demand, reducing the need for costly energy 
storage solutions or backup power sources. This results in more 
efficient use of generated energy, minimising waste and maximis-
ing the financial returns of solar installations. Furthermore, 
improved forecasting accuracy directly contributes to grid stability. 
Inaccurate forecasts can cause imbalances between energy supply 
and demand, potentially destabilising the grid. The GBM-based 
system, by providing more reliable predictions, ensures that solar 
power systems support rather than challenge grid stability. This 
reliability is increasingly vital as renewable energy’s share of the 
overall energy mix grows. Moreover, enhanced forecasting 
accuracy facilitates better planning and decision-making. With 
more reliable forecasts, energy planners can make informed 
decisions regarding the integration of solar power into the grid, 
scheduling maintenance, and managing energy resources. This 

contributes to more efficient grid operations and aligns with energy 
policies aimed at increasing renewable energy adoption. In 
summary, the 25.12% improvement in forecasting accuracy 
achieved through GBM significantly enhances the operational 
efficiency of solar power systems and offers considerable benefits in 
energy management, grid stability, and strategic planning. These 
findings underscore the pivotal role of advanced machine learning 
techniques in modernising the solar energy sector and ensuring its 
long-term sustainability. 

The findings of this study, while demonstrating significant 
advancements in solar power system optimisation, are subject to 
limitations stemming from environmental and geographical 
variability. The performance of the GBM model may require 
localised calibration to account for regional factors such as solar 
irradiance, temperature fluctuations, and weather patterns. For 
example, variations in solar irradiance between regions with 
different climates or altitudes could impact the model’s accuracy 
if not properly adjusted. Future research should focus on fine- 
tuning the model to specific geographic and environmental 
conditions to enhance its generalisability and applicability across 
diverse solar power installations. 

CONCLUSIONS 

This study has illuminated the transformative potential of 
modern machine learning techniques in revolutionising the 
assessment and optimisation of solar power systems. By 
implementing gradient boosting machines (GBM), we have 
achieved remarkable advancements across several key areas. The 

Fig. 2. Comparison of forecasting accuracy between traditional technique 
and GBM-based energy forecasting: a) time series, b) scatter plot; GMB = 
gradient boosting machines; source: own study 
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predictive maintenance approach, driven by GBM, led to 
a significant 29.88% reduction in system downtime compared 
to traditional reactive methods, showcasing the ability of machine 
learning to anticipate and mitigate potential issues before they 
cause disruptions. Additionally, the real-time energy yield 
optimisation resulted in a 14.78% improvement in energy capture 
efficiency, highlighting the effectiveness of dynamically adjusting 
system operations based on continuously updated data inputs, as 
opposed to relying on static models. 

Moreover, the enhanced energy forecasting capabilities 
provided by the GBM model demonstrated a substantial 25.12% 
improvement in accuracy over conventional forecasting methods. 
This leap in precision is critical not only for matching energy 
production with demand but also for maintaining grid stability and 
supporting long-term planning. These findings collectively em-
phasise the profound impact that machine learning can have on the 
operational efficiency, reliability, and economic viability of solar 
power systems. While the GBM-based system demonstrates 
significant potential for improving the efficiency and reliability of 
solar power systems, challenges may arise when integrating it with 
existing infrastructure. Compatibility with legacy systems, which 
may lack the advanced monitoring capabilities required for real- 
time data input, could limit the immediate applicability of the 
proposed approach. Furthermore, the initial training phase for the 
GBM model may require extensive data collection and preproces-
sing, particularly in regions where historical performance data or 
environmental records are sparse. Overcoming these challenges 
will necessitate investment in system upgrades, data infrastructure, 
and tailored calibration to ensure seamless integration and optimal 
performance. The significance of this research extends beyond 
immediate technical gains. It underscores the necessity for the solar 
energy industry to move away from traditional methodologies and 
to adopt advanced machine learning techniques as a standard 
practice. As the global energy landscape increasingly shifts towards 
renewable sources, the integration of machine learning becomes 
not just an option but a requirement for achieving optimal 
performance and sustainability in solar power generation. 

Future work could explore extending the GBM-based 
forecasting framework to predict additional system-level metrics, 
such as equipment wear and degradation. By incorporating data 
on factors like operational hours, environmental stress, and 
maintenance history, the model could provide insights into 
component lifespans and early indicators of potential failures. 
This extension would further enhance preventive strategies, 
enabling more comprehensive management of solar power 
systems and reducing long-term operational costs. In conclusion, 
this study advocates for the broader adoption of machine learning 
technologies within the renewable energy sector, particularly in 
solar power. The results presented here serve as compelling 
evidence of the benefits these technologies can bring, encouraging 
stakeholders to invest in further research and development in this 
area. Continued exploration and refinement of machine learning 
applications in renewable energy will be crucial in driving the 
industry forward, ensuring that solar power remains a viable and 
dominant source of clean energy in the future. 
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