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Abstract: Process modelling is an effective tool for describing and predicting the performance of an aerobic membrane 
bioreactor (AeMBR) for fish canning wastewater (FCWW) treatment under different operating conditions. Three 
machine learning (ML) algorithms were developed, random forest (RF), decision tree regressor (DTR) and adaptive 
boosting regression (AdaBoost-R), based on various physico-chemical characteristics of the influent and operating 
conditions, including hydraulic retention times (HRT), organic loading rates (OLR), total dissolved solids (TDS), 
aeration rate and permeate volumetric rates. Predicted values for chemical oxygen demand (COD), biochemical oxygen 
demand (BOD5), total Kjeldahl nitrogen (TKN), and nitrate (NO3

−) are compared with those reported from the 
experiment. As regards the quantitative assessment of the three predictive models, the DTR model demonstrated 
a modest determination coefficient (R2) value of 0.654, the AdaBoost-R model achieved 0.739, whereas the RF model 
showed the highest performance at 0.98. Due to its robustness and accuracy, the RF model was chosen for its superior 
ability to predict the performance of the AeMBR. Based on OLR of 4.27 (kg COD)∙(m3∙d)−1, a HRT of 24 h, a TDS of 
3 g∙dm−3, an aeration rate of 1,300 Ndm3∙h−1 and a permeate volumetric rate of 15 dm3∙h−1, the average effluent 
characteristics comply with discharge and reuse limits.  

Keywords: effluent characteristics, fish canning wastewater treatment, machine learning algorithms optimisation, 
membrane bioreactor performance, operating conditions 

INTRODUCTION 

Fish canning wastewater (FCWW) represents a challenge in terms 
of its management and treatment. Before discharging, such 
effluents must be effectively treated to reduce the impact on the 
aquatic environment; alternatively, a way must be found to 
recover and reuse these effluents (Correa-Galeote et al., 2021; 
Ayyoub et al., 2022; Ayyoub et al., 2023). In recent years, the use 
of the aerobic membrane bioreactor (AeMBR) technology has 

proven to be advantageous as it improves effluent quality and 
disposal efficiency (Hao et al., 2018; Paul et al., 2023). The 
AeMBR has many advantages over traditional activated sludge 
(AS), including high treatment efficiency, reduced pollution, 
simpler operation, high separation quality, and solids-free effluent 
(Elmoutez et al., 2024). One of the disadvantages of this system is 
the high operating costs due to the fact that aeration promotes 
microbial growth in the wastewater (Al-Asheh, Bagheri and 
Aidan, 2021; Asante-Sackey et al., 2022). The reduction in 
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AeMBR operating costs depends on operating parameters that 
influence their performance (Terna, Ahmed and Joo Hwa, 2016; 
Checa Fernández et al., 2021). 

Efforts to model AeMBR systems for wastewater (WW) 
treatment have traditionally focused on biological processes 
(treatment quality objectives) and various engineering aspects 
(cost-effective design and operation) (Saunders, Drew, and Brink, 
2021). These traditional models are based on well-defined rules 
and theories, such as mass balance equations or reaction kinetics, 
but they may not provide accurate predictions when crucial 
factors are missing, or when key coefficients, such as reaction 
rates or partition constants, are inaccurate or incomplete (Li et al., 
2021; Guo and Cui, 2022). By providing advanced analytics, real- 
time monitoring, predictive capabilities, and optimisation strate-
gies, machine learning (ML) can solve complex problems and 
support advanced modelling to deliver significant benefits in WW 
treatment (Sundui et al., 2021; Kumar et al., 2023). These benefits 
contribute to improved treatment performance, enhanced opera-
tional efficiency, and cost savings in the WW treatment process 
(Kitanou et al., 2021b). 

In recent years, AeMBR performance control using various 
ML algorithms has attracted particular attention, including the 
development of decision trees (DT), artificial neural networks 
(ANN), support vector machines (SVM), and random forests 
(RF) (Schmitt et al., 2018; Mavani et al., 2022). A fundamental 
principle of ML is to generalise relationships between input and 
output using inductive reasoning, and then use these general-
isations to guide decision making in new contexts (Andrade Cruz 
et al., 2022; Zhong et al., 2022). The AdaBoost is an ensemble 
learning technique that works well for complex regression and 
classification tasks by combining multiple weak learners using 
weighted summation to improve prediction accuracy (Nguyen 
and Seidu, 2022). Similarly, decision tree regressor is a non- 
parametric model that predicts continuous variables by recursive 
date partitioning. It offers automated feature selection and 
flexibility in handling non-linear interactions (Qambar and 
Khalidy, 2022). More specifically, RF is an ensemble ML 
technique that is used for classification and regression (Umoh 
et al., 2022). It improves the performance of regression and 
classification trees by combining multiple decision trees 
(Vigneau et al., 2018). The RF method uses bootstrapping and 
randomised variable selection to reduce the correlation between 
individual trees, thereby reducing the variance of the aggregated 
trees (Salem et al., 2022). It proves valuable in assessing the 
impact of operating parameters on AeMBR performance (Chang 
et al., 2022). By utilising an ensemble of decision trees, 
RF effectively predicts outcomes and identifies significant 
variables (Kovacs et al., 2022). Operational factors in the AeMBR 
can have a significant impact on the effectiveness of the 
treatment system in terms of contaminant removal, membrane 
fouling, and overall system performance. Using the RF model, 
the complex relationships and interactions between these 
operational parameters and performance indicators can be 
analysed (Chang et al., 2022). The algorithm can handle non- 
linearities, missing data, and the relative importance of each 
operational parameter influencing the  AeMBR performance 
(Kamali et al., 2021). The RF model is a ML algorithm that has 
gained significant attention in artificial intelligence research due 
to its strong adaptive learning ability and nonlinear mapping 
capabilities (AlSawaftah et al., 2021). 

A review of the literature indicates that there are few 
modelling studies using data-driven machine learning algorithms 
to support the treatment of water produced by the AeMBR that 
consider the impact of operating parameters on the performance 
of this innovative technology (Reza et al., 2011; Yusuf, Wahab 
and Sudin, 2019). However, considering that the majority of 
generated models are trained using only a few operational 
settings, it is unclear how they would perform in various contexts 
and whether they can be generalised (Kazemi et al., 2020; 
Abouzari et al., 2021). Assessing all impact parameters is time- 
consuming and involves difficult experiments and the use 
of hazardous materials, as specified in the standard methodology 
for water and wastewater (WW) assessment (Aghdam et al., 
2023). However, several critical parameters, such as BOD5 and 
COD, are expensive and difficult to measure using sensors. This 
necessitates the development of mathematical prediction models 
to determine their values based on historical data. The ML can 
model complex nonlinear connections using mathematical or 
chemical formulas without explicitly specifying the treatment 
process. Unlike with traditional models, this enables us to explore 
new perspectives on WW behaviours that are difficult to detect. 
The integration of ML into WW treatment processes has been 
successfully used as a flexible computational tool capable of 
enhancing environmental preservation, optimising plant perfor-
mance, and improving the treatment process (Arthur et al., 2022; 
Mekaoussi et al., 2023). Consequently, the present study focused 
on developing three regression algorithms DT, AdaBoost, and RF 
to determine the most appropriate model for different operational 
parameters at the pilot scale to assess the effectiveness of the 
AeMBR for FCWW treatment. Due to its impressive accuracy 
and ability to handle complex nonlinear interactions, the RF 
model was selected as the best method for studying the effect of 
operational parameters on treatment efficiency. This decision is 
based on the model’s enhanced predictive capabilities, which 
provide more reliable and accurate information about elements 
that affect performance, thus offering a solid basis for improving 
FCWW treatment processes. 

MATERIALS AND METHODS 

EXPERIMENTAL SETUP 

An AeMBR pilot scale system uses an ultrafiltration (UF) 
membrane fed with industrial FCWW. The layout of the pilot 
plant (AeMBR) is shown in Figure 1. The main characteristics of 
the UF membranes and the general operating conditions for the 
experimental studies are presented in Table 1. The experiment 
involves two stages. In the first stage, the FCWW undergoes pre- 
treatment by screening and then primary treatment by sedimen-
tation and flotation lasting 2 h. In the second stage, the FCWW is 
treated in a bioreactor in contact with AS and filtered through an 
UF membrane (Kitanou et al., 2021a; Kitanou et al., 2021b). The 
bioreactor is equipped with anoxic and aeration tanks. The total 
suspended solids (TSS) concentration in the second stage is 
maintained at about 10 g∙dm−3, with periodic sludge removal and 
sludge retention time of approximately 12 days (Tab. 1). 

This study shows that sedimentation and flotation are 
effective methods for the removal of TSS and oil and grease 
(O&G), but not effective for the removal of organic matter due to 
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chemical oxygen demand (COD) and biochemical oxygen 
demand (BOD5). This requires further treatment using biological 
and membrane processes. The bioreactor is sequentially aerated; 
the recovered permeate is collected through a ceramic UF 
membrane module. The membrane operates at varying flow rates 
and transmembrane pressures (TMPs), and it is regularly cleaned. 

ANALYTICAL METHODS 

Standard methods are used to determine quality parameters such 
as COD (Hach DR2800 spectrophotometer) and BOD5 (OxiTop 
WTW) (Eaton et al. (eds.), 2005; Rodier, 2009). Total dissolved 
solids (TDS) are measured using a multi-parameter conductivity 
meter (inoLab) with an electrode consisting of two platinum 
strips. An electrode (Sension MM 340) is used to measure the 
nitrate (NO3

−) content. The Kjeldahl method is used to calculate 
total Kjeldahl nitrogen (TKN) (VELP Scientifica, 2013). 

OPERATIONAL DATA 

In this study, the effect of operating conditions is used to control 
the performance of the biological process and membrane 
separation, including HRT, OLR, aeration rate, TDS, and 
permeate volumetric rate, that affect the effluent quality of the 
pilot AeMBR in terms of COD, BOD5, TKN and NO3

−. The 
AeMBR was operated at different OLRs (3.0, 4.27 and 
5.0 (kg COD)∙m−3∙d−1), HRTs (12, 15, 20 and 24 h), TDS (2.5, 
3.0 and 5.0 g∙dm−3), aeration rate (700 and 1300 N dm3∙h−1) and 
permeate volumetric rates (15 and 20 dm3∙h−1). Experience shows 
that the permeate quality is significantly affected by these ranges 
of operating conditions. 

MACHINE LEARNING MODELS 

The three ML algorithms developed include RF, DTR, and 
AdaBoost-R. Their development required 223 samples from the 
study on the effect of operating parameters on the AeMBR 
performance in FCWW treatment. To obtain representative 
samples, a training dataset was generated using 90% of the 
original data, while the remaining 10% was used to form the 
corresponding test dataset. 

Decision tree regressor 

The DT regression is an iterative binary splitting technique used 
to predict continuous outcomes. The proposed method performs 
an intensive search for optimal node splits across features by 
repeatedly selecting splitting rules to minimise prediction error. 
This process is repeated until a pre-specified error threshold or 
minimum sample requirement at the nodes is met (Bishop, 2006). 

Fig. 1. The layout of the pilot-scale AeMBR; source: Ayyoub et al. (2023) 

Table 1. Characteristics of the ultrafiltration (UF) membrane and 
operating conditions of the pilot-scale aerobic membrane 
bioreactor (AeMBR) 

Parameter Feature/Value 

UF membrane 

Membrane material ceramic 

Module Tubular type P10 

Membrane area 0.45 m2 

Cut off 15 kDa / 10–20 nm 

Membrane length 1.178 m 

Diameter of the channels 6 mm 

AeMBR operating conditions 

pH 6.5–8.0 

Temperature 21.5 ±4°C 

Solids retention time (SRT) 12 d 

Ratio of feed to microorganisms (F/M) (0.24 kg BOD5)∙(kg VSS∙d)−1 

Rate of volumetric loading (2.23 kg BOD5)∙(m3∙d)−1 

Biomass concentration in the mixed 
liquor 

10 g∙dm3 TSS  
and 8.5 g∙dm−3 VSS 

Retentate flow rate 124 dm3∙h−1 

Generated sludge 1.46 (g TSS)∙h−1 

Dissolved oxygen 2–4 mg∙dm−3 

Permeate flux 11.1–51.1 dm3∙(m2∙h)−1 

Transmembrane pressure 5–150 kPa  

Explanations: BOD5 = biochemical oxygen demand, VSS = volatile 
suspended solids, TSS = total suspended solids. 
Source: Ayyoub et al. (2023), modified. 
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Adaptive boosting regression 

The AdaBoost is an ensemble learning technique that employs 
adaptive resampling to increase expected performance by 
correcting errors in the underlying algorithm. The basic principle 
of the AdaBoost algorithm is to develop models in iterations, with 
models built in subsequent iterations to correct errors in the 
previous model (Kumar, Kalita and Ramachandran, 2021). When 
this procedure reaches a finite state, the final model is created by 
adding the weights of the underlying models. 

Random forest 

The RF is a type of algorithm based on ensemble learning that 
trains several decision trees on random subsets of data and then 
combines their predictions to obtain a final prediction (Salman, 
Kalakech and Steiti, 2024). This can enhance model performance 
over the use of a single decision tree. The process of construction 
can be summarised as follows: the bootstrap approach is used to 
create new training data sets from the initial training set. Each 
new training data set results in the creation of a regression tree. 
Once trained, each of the regression trees produces a projected 
value, and the average of these values is used to make the final 
forecast (Salem et al., 2022). 

Verification of the model 

The prediction error rates and model performance in regression 
analysis, which are defined in Equations (1)–(4), are evaluated 
using the determination coefficient (R2), mean absolute error 
(MAE), mean squared error (MSE), and root mean squared error 
(RMSE): 

MAE ¼
1

N

XN

i¼1

yi � byijj ð1Þ
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1
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XN
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2

ð2Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
MSE
p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

i¼1

yi � byið Þ
2

v
u
u
t ð3Þ

R2 ¼ 1 �

P
yi � byið Þ

2

P
yi � �yð Þ

2
ð4Þ

where: yi = value of the ith sample of the target variable, 
ŷ = predicted value, and y�= average of collected samples (Zhuang 
et al., 2021). 

RESULTS AND DISCUSSION 

EVALUATION OF PREDICTION MODELS 

This study aimed to build on recent developments in data-driven 
machine learning algorithms to predict the performance of 
a pilot-scale AeMBR for treating FCWW. For this reason, we 
constructed a three-model optimisation of the operating para-
meters using the three ML algorithms: DT, AdaBoost, and 
random forest (RF). This model integrates various physic- 

chemical characteristics of the influent (CODin, BOD5in, TKNin 
and NO3

−in) and all operating parameters such as HRT, OLR, 
aeration rate, TDS and permeate volumetric rate, taking into 
account the dynamics of the interrelation between these different 
parameters. Influent characteristics at various stages are shown in 
Table 2. 

The performance metrics of the predictive models, includ-
ing DTR and AdaBoost-R, are summarised in Table 3. The table 
provides a clear overview of each model’s R2, MSE, RMSE and 
MAE, enabling a direct comparison of their predictive accuracy 
and error levels. In terms of predictive accuracy, DTR 
(R2 = 0.654) performs modestly against AdaBoost (R2 = 0.739). 
The correlations between experimental data and values predicted 
by the final 4 output models using the DT, AdaBoost, and RF 
algorithms are shown in Figure 2a, 2b, and 2c, respectively. 

The scatterplots for the four parameters, such as COD, 
BOD5, TKN, and nitrate, show that the predictive capability is 
adequate and that the linearity between the predicted and actual 
values is close to 1. A further comparison is made using RMSE, 
MAE, MSE, and R2 to provide a quantitative assessment of the RF 
model’s performance. The observed and predicted values gave an 
R2 of 0.98, an MSE of 0.014, an MAE of 1.34, and an RMSE of 
2.36. A low RMSE value means that the simulated and observed 
data are close to each other, indicating better accuracy (Vigneau 
et al., 2018). This exceptional accuracy surpasses both DT and 
AdaBoost regressor, which presented lower R2 scores and larger 

Table 2. Characteristics of fish canning wastewater (FCWW) at 
different hydraulic retention time (HRT), organic loading rates 
(OLR), aeration rate, total dissolved solids (TDS) and permeate 
volumetric rate 

HRT (h) 

Average 
CODin  

Average 
BOD5in 

Average 
TKNin 

Average 
NO3

−in 

mg∙dm−3 

12 4,255.87 2,011.06 17.29 119.89 

15 4,191.53 2,061.07 19.77 122.25 

20 4,308.10 2,353.99 20.46 120.36 

24 3,942.01 2,026.14 21.46 123.35  

Explanations: BOD5 = biological oxygen demand; COD = chemical 
oxygen demand; TKN = total Kjeldahl nitrogen. The organic loading rates 
(OLR) used in the experiments were 3.0, 4.27, and 5.0 (kg COD)∙m−3∙d−1, 
and the total dissolved solids (TDS) concentrations were 2.5, 3.0, and 
5.0 g∙dm−3, respectively. These values are reported where applicable in the 
table. 
Source: own study. 

Table 3. Performance metrics for decision tree regressor (DTR) 
and adaptive boosting regression (AdaBoost-R) 

Model RMSE MAE MSE R2 

DTR 0.1315 0.0737 0.0179 0.654 

AdaBoost-R 0.1176 0.0719 0.0145 0.739  

Explanations: RMSE = root mean squared error, MAE = mean absolute 
error, MSE = mean squared error, R2 = determination coefficient. 
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errors. The higher performance of the RF model is due to its 
ensemble nature, which reduces overfitting while efficiently 
capturing complex nonlinear relationships between the data. 
With low MSE, RMSE, and MAE, the RF model is the most 
reliable and stable for predicting the effect of the operational 
parameters on the performance of the AeMBR in treating 
FCWW, making it an excellent choice for high-precision 
applications in environmental monitoring and management. 

Overall, our results revealed the importance of certain 
parametric data. However, we find that most of studies that 

generated models were trained using only few operational 
parameters. For example, (Reza et al., 2011) trained the ANN 
network using 193 operational data including TDS, OLR, and 
HRT at the inlet and effluent COD, total organic carbon (TOC), 
and O&G concentrations at the outlet. According to Aghdam 
et al. (2023), the RF algorithm for BOD5 estimation showed 
a better performance level. 

Zhong et al. (2022b) recently investigated effluent quality 
modelling in an AeMBR that treated an ammoniacal nitrogen 
influx with high salt content. They used a variety of methodo-
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logies, including linear regression (LR), regularised linear 
regression (RR), kernel-peak regression (KRR), polynomial 
regression (PR), nearest neighbour (KNN), support vector 
machines (SVM), gradient boosting (GB), and random forest 
(RF). They have chosen operational input variables such 
as salinity, dissolved oxygen (DO), HRT, pH, temperature, 
CODin, NH4

+-Nin, C/N and NH4
+-Nout with outputs such as 

NH4
+-Nout, NO3

−-Nout, NO2
−-Nout, CODout and TNout. The 

algorithms effectively simulated AeMBR operation in high- 
salinity wastewater, with RF and GB offering the best results, 
although RF required the highest computing capacity. The 
authors stressed the need for a variety of data sets, as well as 
long-term data, to improve model accuracy. In their study, Li, 
Li and Wang (2020) used principal component analysis (PCA) 
by selecting three input parameters, such as mixed liquid 
suspended solids (MLSS), resistance and pressure, to predict 
membrane flux. They evaluated RF, backpropagation neural 
networks and SVMs on the Hadoop massive data platform, and 
found that the RF-based model had the lowest RMSE and the 
highest accuracy. 

UNDERSTANDING PARAMETER EFFECTS  
WITH RF MODELLING 

Python software was used to create a three-dimensional diagram 
that visualises the interactions between parameter effects and 
their impact on water quality characteristics in an organic form, 
such as COD and BOD5, and in nutrient form, such as NO3

− and 
TKN. The impact of parameters and their impact on permeate 
characteristics is shown in a three-dimensional diagram in 
Figure 3. 

The effects of OLR, TDS, and their interrelations with the 
permeate COD characteristics are presented in Figure 3a. The 
lowest COD concentration was obtained with the respective lower 
values of TDS and OLR (Fig. 3a). An increase in TDS led to an 
increase in COD in the permeate, indicating that high TDS levels 
can negatively impact treatment efficiency (Chandrasekhar et al., 
2022). Similarly, as OLR levels increase, the concentration of 
COD in the permeate can also increase, indicating that high OLR 
levels can lead to higher levels of COD in the permeate (Vo et al., 
2021). Increasing the OLR can enable a more consistent treatment 
efficiency with active biomass in the membrane module. 
However, significant membrane fouling is expected as the OLR 
increases (Schmitt et al., 2018; Burman and Sinha, 2020). 

Analysis of the effects of HRT and OLR and their impact on 
TKN concentrations (Fig. 3b) showed that as HRT increased up 
to 24 h, TKN in the permeate decreased, indicating that a longer 
HRT may promote better nitrogen removal. As HRT increases, 
the TKN concentration in the permeate may also increase, 
indicating that high OLRs may lead to higher TKN levels in the 
permeate. Both parameters influence effluent quality (Zhu, 
Huang and Chen, 2022; Rahman et al., 2023). 

The influence of HRT and aeration rate and their impact on 
BOD5 in the permeate is shown in Figure 3c. As HRT increases, 
BOD5 decreases in the permeate, indicating that longer HRTs give 
biological processes more time to remove organic pollutants. As 
the aeration rate increases, the BOD5 concentration in the 
permeate may decrease, indicating that higher aeration rates can 
improve organic matter decomposition and reduce BOD5 levels 
(Wang et al., 2021). With a 24-h retention time and an aeration 
rate of 1,300 Ndm3∙h−1, the BOD5 concentration reached a value 

Fig. 2. Combined scatter plot of predicted versus actual values for chemical oxygen demand (COD), biological oxygen demand 
(BOD5), total Kjeldahl nitrogen (TKN) and NO3

− using: a) the decision trees (DT), b) adaptive boosting (AdaBoost), c) random 
forest (RF); source: own study 
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of 40 mg∙dm−3, indicating a better performance of the AeMBR for 
treating FCWW. 

As the HRT increases, the nitrate in the permeate decreases, 
indicating that longer HRT may promote better nitrate removal, 
potentially through denitrification (Hoover et al., 2016). As the 
permeate volumetric flow rate increases, the nitrate concentration 
in the permeate may also decrease, indicating that higher 
permeate flow rates may enable nitrate concentration to be 
reduced (Breida et al., 2018). Furthermore, the results of the 
membrane separation process using different permeate volu-
metric flow rates (15 and 20 dm3∙h−1) show that the permeate 
volumetric flow rate of 15 dm3∙h−1 gives the best results (Fig. 3d). 

OPTIMISATION OF EFFLUENT QUANTITY 

Based on the discharge and reuse limits for treated wastewater, 
organic matter and nutrient standards must comply with these 
limits. In this study, we took into account various influent 
characteristics and operating conditions, which are detailed in 
Table 2. These data formed the basis for the development of the 
RF algorithm, optimising effluent quality conditions to meet 
discharge and reuse standards. Some optimum conditions for 
achieving by AeMBR treatment optimal concentrations of COD, 
BOD5, TKN and NO3

− are shown in Table 4. It can be seen that 

under operating conditions with a high HRT of 24 h, OLR of 
4.27 (kg COD)∙m−3∙d−1, TDS of 3 g∙dm−3, aeration rate of over 
1,300 Ndm3∙h−1, and a permeate volumetric rate of 15 dm3∙h−1, 
a good correlation between the actual and predicted values was 
obtained with an R2 value of 0.98 (values observed during various 
iterations of RF model varied between 0.96 and 0.99). The mean 
COD concentrations in the AeMBR permeate was 128 mg∙dm−3. 
These results are very close to the standards for reuse of about 100 
mg∙dm−3. Furthermore, the mean effluent BOD5 was 40 mg∙dm−3, 
which is below standards for discharge to the environment 
(100 mg∙dm−3) and close to reuse standards. In line with 
Moroccan reuse standards, NO3

− content and TKN concentra-
tions were 12.1 mg∙dm−3 and 0.34 mg∙dm−3, respectively. 
Furthermore, under these conditions, high removal efficiencies 
were achieved for 97% of the organic carbon and over 96% of the 
measured ions (Ayyoub et al., 2022). 

In a previous study (Reza et al., 2011), ANN has been used 
effectively to predict submerged membrane behaviour in the 
treatment of hypersaline effluents with a range of TDS content 
(35 to 250 g∙dm−3) and OLRs (0.281 to 3.372 (kg COD)∙m−3∙d−1). 
The network was trained using 193 operational data. The 
resulting model predicted a COD removal of 98% with an OLR 
of 2.44 (kg COD)∙m−3∙d−1, TDS of 78 g∙dm−3, and a reaction time 
of 40 h, corresponding to an HRT of 80 h. 

Fig. 3. Influence of parameters and their interactions: a) effects of organic loading rates (OLR), total dissolved solids (TDS) and 
their interrelations on chemical oxygen demands (COD) in the permeate, b) the effects of hydraulic retention times (HRT) and 
OLR and their interactions on total Kjeldahl nitrogen (TKN) concentrations, c) influence of HRT and aeration rate and their 
interaction on biochemical oxygen demand (BOD5) in the permeate, d) influence of HRT and permeate volumetric rate on the 
nitrate concentration; source: own study 
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CONCLUSIONS 

In this study, the random forest (RF) model was developed to 
evaluate the performance of aerobic membrane bioreactor 
(AeMBR) in fish canning wastewater (FCWW) treatment. This 
model includes hydraulic rate times (HRT), organic loading rates 
(OLR), total dissolved solids (TDS), aeration rate, and permeate 
volumetric rate as inputs, as well as physic-chemical character-
istics of untreated water, in terms of chemical oxygen demand 
(COD), biological oxygen demand (BOD5), total Kjeldahl 
nitrogen (TKN), and nitrate content. For a quantitative assess-
ment of the model’s performance, the observed and predicted 
values gave a determination coefficient (R2) of 0.98, mean squared 
error (MSE) of 0.014, mean absolute error (MAE) of 1.34, and 
a root mean squared error (RMSE) of 2.36. According to the 
model created, the optimum results for HRT, OLR, and permeate 
volumetric rate are 24 h, 4.27 (kg COD)∙m−3∙d−1 and 15 dm3∙h−1 

respectively. These results clearly show that RF is very useful for 
assessing the effect of operating parameters on the AeMBR 
performance. 
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