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Abstract: Wastewater treatment is essential for protecting both the environment and public health. With a growing 
global population and concerns about water shortages, wastewater must be treated effectively to meet the increasing 
demand for drinking water. Wastewater treatment plants (WWTP) that use innovative technologies, such as machine 
learning (ML), are playing a leading role in addressing this challenge. This study aims to use advanced ML algorithms 
to predict parameters in WWTP Kenitra, such as total suspended solids (TSS), chemical oxygen demand (COD), and 
biological oxygen demand (BOD). Four ML models were evaluated, including random forest (RF), decision tree 
regressor (DTR), Gaussian process regressor (GPR), and adaptive boosting regression (AdaBoost-R). The coefficient of 
determination (R2) and accuracy were used to evaluate the algorithm’s efficiency, R2 values of 0.99, 0.93, and 0.96 were 
obtained by the DTR, reflecting exceptional performance with RMSE values of 1.33 mg∙dm−3 for TSS, 3.85 mg∙dm−3 for 
COD, and 2.32 mg∙dm−3 for BOD. The GPR demonstrated strong predictive capability, achieving R2 values of 0.92 for 
TSS and 0.97 for BOD, with corresponding RMSE values of 3.12 mg∙dm−3, and 2.67 mg∙dm−3, respectively. These 
results indicate that the DTR and GPR learning models provide better algorithms for evaluating wastewater parameters. 
In particular, the study demonstrates the main benefits of using ML algorithms to predict the parameters of WWTP. 
This study illustrates that the DTR optimises treatment solutions and monitors the treatment process. The proposed 
method outperforms other algorithms in terms of efficiency and provides an accurate way to improve the performance 
of WWTP.  

Keywords: AdaBoost regressor, decision tree regressor, Gaussian process regressor, machine learning, performances, 
random forest, wastewater treatment plants (WWTP) 

INTRODUCTION 

Water is a vital resource for the sustainability of both human and 
natural ecosystems (Daud, 2023). The escalating demand for 
water has emerged as a critical global challenge exacerbated by 
increasing industrial pollutants, rapid population growth, and 
intensive agricultural practices, highlighting the need for effective 
water management strategies (Santos, Carvalho and Martins, 
2023). Wastewater treatment technology is essential to eliminate 
contaminants from water systems. Using advanced treatment 
methods enhances wastewater management and plays a key role 
in protecting the environment and public health by remov-

ing harmful substances (Rousis et al., 2024). Among various 
wastewater treatment technologies the activated sludge process 
treats and maintains water quality by removing pollutants 
(Ayyoub et al., 2022). Biological wastewater treatment using rich 
and diverse microbial communities significantly reduces the 
levels of pollutants and nutrients (Ayyoub et al., 2023). Treatment 
conditions and wastewater characteristics influence the size and 
composition of microbial communities, affecting their role in 
treatment processes and their overall efficiency (Lukyanova, 
Golodov and Kirilenko, 2024). However, complex, nonlinear 
process variables and fluctuating intake parameters present 
challenges for wastewater treatment plants (WWTP), as they 
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require comprehensive and continuous effluent quality monitor-
ing (Dey et al., 2024). 

Traditional wastewater monitoring techniques are costly and 
labour-intensive for real-time applications, and they cannot 
maintain effluent quality standards due to increasing industrialisa-
tion and urbanisation. Although the application of wireless sensor 
networks is limited by their cost and availability, such networks can 
offer some online measurement capabilities. However, these 
traditional methods face significant limitations (Duarte et al., 
2024). Traditional methods for monitoring biochemical oxygen 
demand (BOD5), total suspended solids (TSS), and chemical 
oxygen demand (COD) in wastewater treatment are very costly 
and resource-intensive; standard BOD testing takes five days, and 
COD and TSS assessments require specialised equipment. 

These challenges, combined with the non-linear correlation 
of these parameters, limit the effectiveness of traditional methods, 
underscoring the need for advanced real-time monitoring 
solutions to maximise performance (Asteris et al., 2022). To 
overcome these challenges and improve wastewater management 
operations, machine learning (ML) must be integrated. ML 
techniques provide WWTPs with a deeper analytical under-
standing of key processes and parameter interactions, and serve as 
a powerful tool for predicting key wastewater parameters, which 
in turn enables operational improvements (Aghdam et al., 2023). 
By using ML, we can model complex nonlinear relationships 
without defining the treatment process through chemical or 
mathematical equations. The integration of ML techniques into 
wastewater treatment operations can lead to several benefits, 
including decreased energy consumption and maintenance costs, 
enhanced plant efficiency, process optimisation, and environ-
mental conservation (Qambar and Khalidy, 2022). The most 
common ML models used to predict, evaluate, and diagnose 
WWTP include artificial neural networks (ANNs), fuzzy logic, 
genetic algorithms (GA), adaptive-network-based fuzzy inference 
system (ANFIS), and hybrid models that include ANN-GA. The 
ANNs are especially widely used to model and predict the 
performance of biological treatment processes in WWTP. Duarte 
et al. (2024) used three machine learning models, i.e. random 
forest (RF), support vector machine (SVM), and multilayer 
perceptron (MLP) to predict wastewater quality parameters in 
wastewater treatment plants. Shingare et al. (2024) demonstrated 
how ML can be applied to WWTP to ensure high-quality effluent, 
maximise energy efficiency, detect issues, and monitor sensors. 
Nasir Bin and Li (2024) used three machine learning models, 
i.e. RF, gradient boosting machine (GBM), and gradient boosting 
tree (GBT) to predict the amount of sludge produced in 
wastewater treatment facilities. With the lowest error measures 
and highest coefficient of determination (R2) values, RF out-
performed the other models, especially when feature selection 
techniques were used to improve it. All models achieved high 
prediction accuracy. Cechinel et al. (2024) predicted the COD in 
wastewater treatment plants using ML models, including RF, 
multilayer receptors, long short-term memory, and SVM. The 
results demonstrated the effectiveness of the models and provided 
guidance for improving wastewater treatment procedures, with 
MLP performing best with daily data, long short-term memory 
(LSTM) outperforming with hourly data, and SVM outperform-
ing other models when using actual waste measurements. 

Gholizadeh et al. (2024) predicted the TSS in wastewater 
treatment facility using three machine learning algorithms: adaptive 

boosting (AdaBoost), k-nearest neighbours (KNN), and artificial 
neural network-multilayer (ANN-MLP). The fourth scenario, which 
used the sequential backward selection feature selection method, 
was the most effective among the five scenarios. The ANN-MLP 
performed the best proving its reliability in predicting TSS. 

Aghilesh et al. (2023) optimised the biosorption process for 
the removal of methylene blue dye from textile wastewater by 
using sugarcane residue and groundnut shells in combination 
with response surface methodology, ANN, and ANFIS. Fouchal 
et al. (2025) created two novel hybrid machine learning models, 
neural architecture search–deep neural network (NAS-DNN) and 
neural architecture search–random forest regression (NAS-RFR), 
that outperformed traditional wastewater quality assessment and 
treatment plant optimisation decision-making processes. These 
models achieved correlation coefficient (R) values of 0.953 and 
0.934 at WWTPs and predicted BOD5 with remarkable accuracy. 
Tan, Arumugasamy and Teo (2025) employed ANN models to 
predict and forecast the water quality index (WQI) using key 
water quality parameters. The prediction model outperformed the 
forecasting model in terms of accuracy. Rashidi-Khazaee, 
Rezvantalab and Kheshti Monasebi (2024) demonstrated the 
efficiency of ensemble machine learning algorithms, including 
AdaBoost, RF, GB, in accurately predicting key wastewater quality 
indicators such as COD, BOD, TSS, TN, and TP. Notably, the 
AdaBoost model outperformed the others, achieving the lowest 
mean absolute error for pH, BOD, and COD. 

Wastewater treatment processes face numerous challenges, 
particularly in predicting key parameters such as CODeff, BODeff, 
and TSSeff. This issue is particularly relevant for the Kenitra 
WWTP, where local wastewater characteristics and environmen-
tal conditions pose unique challenges. Furthermore, few 
studies have explored the environmental impacts of discharging 
treated wastewater into natural water bodies – a major concern 
for Kenitra. Our study aims to fill these gaps by assessing the 
predictive accuracy of machine learning algorithms like RF, 
decision tree regressor (DTR), Gaussian process regressor (GPR), 
and AdaBoost-R. These algorithms also improve the precision 
and effectiveness of wastewater treatment assessments, support 
compliance with environmental regulations, and promote more 
environmentally friendly wastewater management techniques. 

MATERIALS AND METHODS 

STUDY AREA 

The wastewater treatment plant is located northeast of the city of 
Kenitra in the Rabat-Sale-Kenitra region of Morocco. The system is 
designed to treat pollutants generated by the equivalent of 350,000 
inhabitants, treating approximately 60,000 m3 of wastewater per 
day on average. The wastewater treated at the Kenitra plant is 
classified as urban and is treated using an activated sludge system. 
The plant operates two main treatment lines, each addressing 
different aspects of the wastewater treatment process. The lines are 
divided into three functional components, as illustrated in Figure 1; 
this figure shows a schematic representation of the study area, 
which was designed using Microsoft PowerPoint: 
– “water” line is in charge of biologically treating urban waste-

water to ensure it satisfies environmental regulations before it 
is released into the Sebou River; 
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– “sludge” line: the secondary sludge produced during the biolo-
gical treatment process is treated and processed in this section; 

– “biogas” line: this section focuses on the anaerobic digestion of 
sludge to create biogas, which is a renewable energy source that 
improves the plant’s sustainability and energy efficiency. In this 
study, we focused on the “water” line. 

As shown in Figure 1, wastewater arriving at the pumping 
station undergoes screening followed by to primary treatment to 
remove coarse matter. This includes fine screening and combined 
grit and grease removal. The primary laminar sedimentation 
process then effectively removes the majority of the suspended 
solids. The partially treated water is subsequently directed to an 
aeration tank, where activated sludge is used to reduce carbon 
pollution. In the final stage, a purification process separates the 
treated water from the sludge, after which water is discharged into 
the Sebou River, one of Morocco’s main rivers. Historically, water 
quality issues in the Sebou River have been impacted by untreated 
industrial and domestic effluents. The current plant ensures that 
the effluent complies with environmental standards, helping to 
improve water quality. Daily monitoring between 2022 and 2023 
produced 390 data points. The dataset includes input parameters, 
such as pH, electrical conductivity (EC), chemical oxygen demand 
(COD), biological oxygen demand (BOD5), total suspended solids 
(TSS), and output parameters, such as COD, BOD5, and TSS. 

ANALYTICAL METHODS 

Daily influent and effluent samples from the Kenitra wastewater 
treatment plant were collected in strict adherence to Moroccan 
standards outlined in the Ministère de l’Environnement du Maroc 
(2002). Critical efficiency parameters measured included pH, 
COD (mg∙dm−3), BOD5, (mg∙dm−3), and EC (µS∙cm−1). This daily 
sampling ensured the acquisition of a thorough and high- 
resolution dataset, providing a solid basis for assessing treatment 
effectiveness. 

Statistical analysis 

The influent and effluent concentrations of pH, BOD5, EC, COD, 
and TSS were examined using analysis of variance (ANOVA) in 
OriginPro 2018. The results indicated statistically significant 
differences between values. 

Machine learning models 

Supervised learning is an ML approach in which algorithms are 
trained on labelled datasets, enabling them to classify data or 
predict outcomes with known accuracy. Over time, the model 
can be trained and tested for accuracy using labelled inputs and 
outputs. Generally, supervised learning problems can be divided 
into two categories: classification algorithms, which attempt 

to group data into distinct categories, and regression algorithms, 
which are useful for applications and predict numerical values 
by figuring out how dependent and independent variables 
relate to one another (Wang, Cui and Ke, 2023). In this study, 
we used four different ML algorithms to predict wastewater 
quality effluent at the Kenitra WWTPs: RF, DTR, GPR, and 
AdaBoost-R. 

The flowchart outlines a systematic approach using machine 
learning to predict wastewater parameters in the Kenitra WWTPs 
(Fig. 2). The influent and effluent parameters are collected, and the 
data is pre-processed for analysis. Four ML models were selected 
for prediction, including GPR, RF, DTR, and AdaBoost-R. The 
dataset is split into training (70%) and testing (30%) subsets and 
the models are trained and tested. The model performance was 
evaluated using R2, root mean square error (RMSE), Nash– 
Sutcliffe efficiency (NSE), Kling–Gupta efficiency (KGE), mean 
square error (MSE), and mean absolute error (MAE) metrics. The 
results are compared to assess the model performance, and 
conclusions are drawn, offering insights and recommendations. 
This approach ensures a comprehensive evaluation of the role of 
machine learning in predicting and improving wastewater 
treatment plants. 

Fig. 1. Wastewater treatment line diagram; source: own elaboration 

Fig. 2. Study flow chart; KWWTPs = Kenitra wastewater treatment plants, 
GPR = Gaussian process regressor, RF = random forest, DTR = decision 
tree regressor, AdaBoost-R = adaptive boosting regression, R2 = 
coefficient of determination, RMSE = root mean square error, MAE = 
mean absolute error, NSE = Nash–Sutcliffe efficiency, KGE = Kling– 
Gupta efficiency, MSE = mean square error; source: own elaboration 

Machine learning algorithms in wastewater technology: Predicting treatment quality and efficiency 139 

© 2025. The Authors. Published by Polish Academy of Sciences (PAN) and Institute of Technology and Life Sciences – National Research Institute (ITP – PIB). 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) 



� Random forest (RF) 
The random forest model is an ML technique with high 

adaptive learning capability and nonlinear mapping features 
and has emerged as an important focus of AI research (Cheng, 
Chunhong and Qianglin, 2023). It has become useful in many 
fields, including water resource applications. To improve 
prediction accuracy and reduce overfitting, a large number of 
decision trees were constructed during the training phase, and 
their outputs were collected. To enhance the diversity among the 
trees, the algorithm employs an ensemble strategy, where each 
tree is trained on a random subset of the data. By selecting 
a random subset of features for each tree, a random forest also 
introduces more randomness, which reduces correlation and 
enhances the robustness of the model (Tyralis, Papacharalampous 
and Langousis, 2019). The final prediction in the RF dataset was 
calculated by averaging the predictions of each tree. The proposed 
algorithm is well known for its capacity to control large, high- 
dimensional datasets and avoid overfitting. The accuracy and 
robustness of the RF algorithms make them suitable for various 
real-world water resource problems. 
� Decision tree regressor 

The decision tree regression is a supervised machine 
learning algorithm that iteratively splits the input space according 
to specific feature values (Saleem, Harrou and Sun, 2024). The 
model is structured as a binary tree, where each internal node 
represents a decision based on a binary yes/no criterion for 
a given feature. The algorithm begins with a root node, which is 
often referred to as the parent node, from which subsequent 
nodes are recursively split according to specified feature thresh-
olds. The splits generate new left and right child nodes. This 
iterative process of splitting continues until the pre-specified 
stopping criteria are met, forming leaf nodes of the tree, and 
representing the final predictive values. At each split, a decision is 
made based on the feature values, which results in data 
partitioning, with each division contributing to the model’s 
prediction (Yazdani, Doostizadeh and Aminifar, 2023). Finally, 
the leaf nodes hold the predicted output values, determined by 
the splitting performed throughout the decision-making process 
(Atanasova and Kompare, 2002). 
� Gaussian process regressor 

The Gaussian regression is a supervised learning technique 
that solves probabilistic regression and classification problems 
(Ivan and Ivan, 2023). The model is nonparametric and used for 
regression in which the target function is a stochastic process. As 
a Gaussian distribution, it is defined by mean and covariance 
functions. GPR provides predictions with associated uncertainty 
by modelling the underlying function and observational 
noise. The computational practicality has improved with recent 
advances such as GPy-Torch. In complicated systems, GPR is 
useful for fault detection because it can identify and isolate 
operational issues and sensor failures (Ivan and Ivan, 2023). 
� Adaptive boosting regression (AdaBoost-R) 

The AdaBoost-R is an ensemble ML technique that uses 
adaptive resampling to iteratively correct the errors of the 
underlying model, which improves prediction accuracy. The 
proposed model builds a set of models, fixes the errors in 
previous models, and then uses a weighted sum to combine all 
models into a final predictive model with modifications. The 
proposed method, which works particularly well when combined 
with DTs, excels at optimising performance on complex datasets 

by focusing on hard-to-predict situations. The AdaBoost-R is 
a useful tool for many applications, such as wastewater treatment 
and other predictive tasks, due to its ability to handle noisy data, 
and its focus on difficult predictions (Nguyen and Seidu, 2022). 

THE QUALITY OF THE DATASET AND ITS SPLITTING 
IN MACHINE LEARNING PERFORMANCE 

In complex domains like wastewater treatment, the ML model 
performance is heavily influenced by the completeness and 
quality of a dataset. The model is guaranteed to capture the 
variability found in real-life situations when based on a repre-
sentative dataset. Data from 2022 to 2023 covering 390 samples 
and key influent characteristics including EC, pH, TSS, COD, and 
BOD5 were used to predict effluent concentrations TSSeff, CODeff, 
and BODeff at the Kenitra wastewater treatment plant. To achieve 
accuracy and statistical consistency, the dataset was carefully 
curated and pre-processed using Microsoft Excel. To further 
explore, analyse, and generate results, including figures and tables 
Python (version 3.10.12) was selected, a popular programming 
language for scientific computing and data analysis (Python, no 
data). The scikit-learn library integrated into Python, providing 
a full range of machine-learning techniques for model evaluation, 
regression, and classification (Pedregosa et al., 2011), while 
pandas (The pandas Development Team, 2023) and NumPy 
(Harris et al., 2020) were used for data processing and numerical 
computations. Additionally, Matplotlib (Caswell et al., 2023) 
facilitated the creation of insightful visualisations, ensuring robust 
and reproducible analysis workflows. 

The dataset contains 390 total samples, with 273 samples 
used for training (70%) and 117 (30%) samples used for testing 
(validation). This 70/30 split is a standard approach in machine 
learning for datasets of this size, ensuring that there is enough 
data to effectively train models while maintaining a validation set 
large enough to evaluate reliable performance. We also performed 
k-fold cross-validation (with k = 5) to validate the model’s ability 
to generalise across different subsets of the data. We also 
experimented with different splits, but the 70/30 split worked best 
for our study. 

MODEL PERFORMANCE EVALUATION 

The predictive accuracy of the COD, BOD, and TSS effluent 
prediction models was determined using the following statistical 
measures: RMSE, MSE, MAE, KGE, NSE and R2. These metrics 
were chosen because they offered a thorough assessment of model 
accuracy and error distribution. Each metric provides distinct 
information on different aspects of model performance, such as 
error magnitude, model fit, and overall prediction reliability, 
which are essential to ensure robustness and interpretability in 
the context of wastewater treatment predictions. The square root 
of the average squared differences between the observed and 
predicted values was determined by the RMSE, as indicated in 
Equation (1). Lower RMSE values indicate better model accuracy. 
This metric expresses the magnitude of prediction errors. The 
MSE between the actual and predicted values determined from 
the data was calculated using Equation (2). Both metrics are 
closely related because the RMSE is the square root of the MSE; 
lower values indicate better performance. The MAE, as provided 
by Equation (3), between the expected and actual values is a direct 
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indicator of the magnitude of the error. The R2 in Equation (4) 
evaluates the percentage of variance in the effluent (COD, BOD, 
and TSS) predicted by the independent variables. The R2 

coefficient, presented in Equation (4), assesses the percentage of 
variance in the dependent variables (COD, BOD, BOD, TSS 
effluent) that can be predicted from the independent variables 
(pH, EC, COD, BOD, TSS influent). Higher R2 values, approach-
ing 1, indicate better agreement between model predictions and 
observed data. The NSE presented in Equation (5), is a critical 
metric for assessing how well prediction models perform, 
especially in environmental research. Perfect predictions are 
indicated by an NSE value of 1, substandard performance is 
indicated by values close to zero, and negative values show that 
the model performs worse than the average observed value. 
Finally, The KGE in Equation (6) is a powerful metric that 
incorporates correlation, bias, and variance components to better 
understand model performance. Values close to zero or negative 
indicate degraded performance, while a KGE score of 1 indicates 
an excellent model. These metrics collectively evaluate the 
model’s predictive accuracy across various ML algorithms 
employed, RF, DTR, GPR, and AdaBoost-R. 

RMSE ¼
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where: N = number of observations, i = index of the data 
point, yi = observed value at the i-th data point, byi = predicted 
value at the i-th data point, �y = mean of observed values yi, 
Oi = observed value at the i-th point, Pi = predicted value at the i-th 
point, �Oi = mean of observed values Oi, r = Pearson correlation 
coefficient, β = ratio of mean predicted to mean observed values, 
γ = ratio of coefficient of variation of predicted to observed values. 

RESULTS AND DISCUSSION 

WASTEWATER QUALITY DATA 

To better understand the findings, a statistical summary of the 
wastewater parameters monitored (TSS, EC, pH, COD, and BOD) 
from the influent and effluent is included in Table 1. Time series 
related to important parameters were evaluated for the asym-
metry and flatness of the distribution using skewness and kurtosis 
metrics. The kurtosis value of 3 indicates that the distribution is 
Gaussian. Distributions with kurtosis >3 are higher than the 
normal distribution, and distributions with kurtosis <3 are flatter 
than the typical distribution. In contrast, skewness is based on 
measurement asymmetry around the sample mean. Positive 

Table 1. Detailed statistical evaluation of influent and effluent wastewater metrics 

Wastewater Statistics EC 
(µS·cm−1) 

TSS COD BOD 
pH 

mg∙dm−3 

Influent 

max. 3418.0 1924.0 3989.0 1037.0 8.0 

min. 978.0 272.0 366.0 181.0 7.0 

avg. 1751.6 678 1100.4 516 7.7 

median 1725.0 565.0 990.0 487.0 7.7 

SD 327.1 340.5 398.8 158.7 0.2 

skew 1.8 1.1 2.9 1.1 −0.6 

kurt 7.0 0.7 16.1 1.6 0.4 

Effluent 

max. 3380.0 268.0 423.0 58.0 9.0 

min. 123.0 30.0 76.0 16.0 7.0 

avg. 1744.7 102 180.2 42.1 8.0 

median 1723.0 95.0 166.0 46.0 8.0 

SD 342.8 44.5 60.6 12.1 0.3 

skew 0.6 0.7 1.1 −0.5 −0.6 

kurt 7.4 0.4 1.2 −1.2 7.2  

Explanations: EC = electrical conductivity, TSS = total suspended solids, COD = chemical oxygen demand, BOD = biological oxygen demand, 
min. = minimum, max. = maximum, avg. = average, SD = standard deviation, skew = skewness, kurt = kurtosis. 
Source: own study. 
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skewness indicates that the data are more evenly distributed to the 
right, whereas negative skewness suggests that the data are 
primarily skewed to the left. The remaining measurements, such 
as maximum, minimum, average, median, and standard devia-
tion, statistically depict the location and distribution of the 
dataset. Table 1 shows that the influent and effluent variables of 
the WWTPs do not exactly follow a Gaussian distribution, which 
is one of its primary characteristics. The influent data, in 
particular, demonstrate significant skewness and kurtosis, in-
dicating large deviations from a normal distribution. Processing 
improves the data distribution for many parameters, bringing 
them closer to normal, especially for TSS, and BOD. However, 
parameters such as EC and pH deviated from the Gaussian 
distribution in the effluent. The influent and effluent concentra-
tions of BOD, COD, and TSS varied significantly. The average 
effluent concentrations for BOD, COD, and TSS were 42.1, 180.2, 
and 102 mg∙dm−3, respectively, which were lower for BOD 
(516 mg∙dm−3), COD (1100.4 mg∙dm−3), and TSS (678 mg∙dm−3) 
than the average influent concentrations (p-values of 0.000 
highlight the statistical significance of these results). 

PERFORMANCE OF MACHINE LEARNING ALGORITHMS 

Random forest 

The RF model demonstrated good accuracy in predicting TSS, 
COD, and BOD (Tab. 2). The model showed strong predictive 
accuracy in the training set, with extremely high efficiency 
metrics and minimal error values in all parameters, In the 
training phase, the MAE values varied from 0.90 mg∙dm−3 for 
BOD to 3.20 mg∙dm−3 for COD, and the RMSE values ranged 
from 1.20 mg∙dm−3 for BOD to 4.00 mg∙dm−3 for COD. The 
modelled and observed data showed excellent alignment, as 
evidenced by the consistently high R2, which ranged from 0.90 
to 0.94. 

During testing, the accuracy of the models decreased, 
especially for COD, which had the highest RMSE and MAE 
(17.00 mg∙dm−3), and a lower R2 of 0.83. Even though TSS 
maintained a moderate R2 of 0.86, it also displayed high testing 
errors (RMSE = 15.00 mg∙dm−3, MAE = 12.00 mg∙dm−3). 
However, BOD demonstrated greater stability (R2 remained at 
a high level of 0.90), while testing RMSE and MAE increased only 
slightly to 3.50 mg∙dm−3 and 2.80 mg∙dm−3, respectively. Despite 

the decrease in performance on the testing dataset, the RF model 
maintained high NSE values from 0.83 for COD to 0.90 for BOD. 

To enhance comprehension of the developed models’ 
accuracy, the scatter plots in Figure 3 indicate how the actual 
and predicted values for BOD, COD, and TSS provide valuable 
insights into the RF model’s performance. The scatterplot of the 
actual values shows close-spaced spots that show minimal 
deviation from the actual values and good prediction accuracy. 
In contrast, the scatter plot for COD displays a wider spread of 
points, reflecting higher RMSE and MAE values suggesting 
greater variability and occasional larger prediction errors. The 
TSS scatter plot falls between the two, with moderate spread, 
indicating intermediate prediction accuracy. These visualisations 
support the numerical metrics, underscoring the model’s effec-
tiveness in predicting BOD and revealing challenges in accurately 
predicting COD and TSS. The results of our study unequivocally 
indicate that the models performed better in predicting TSS 
concentrations than the ANN-MLP model used in Gholizadeh 
et al. (2024), which had R2 values of 0.78 during training and 0.80 
when tested. However, our analysis showed that TSS, COD, and 
BOD had R2 values of 0.86, 0.83, and 0.90, respectively, indicating 
higher prediction accuracy for components crucial to wastewater 
treatment. While Gholizadeh’s study focused primarily on feature 
selection optimisation, our approach included additional metrics, 
such as NSE and KGE, to offer a more thorough evaluation of 
model performance. The proposed method’s ability to enhance 
wastewater quality forecasts and advance eco-friendly wastewater 
treatment technologies is demonstrated by the outcomes 
presented in this paper. 

Decision tree regressor 

The DTR model used in this study has outstanding predictive 
power for estimating TSS, COD, and BOD, among other 
wastewater treatment effluent parameters (Tab. 3). A variety of 
metrics, such as RMSE, MAE, MSE, NSE, KGE, and R2, were used 
to thoroughly assess the model’s performance on both the 
training and testing datasets. For TSSeff, the model achieved an 
R2 = 0.99 on both training and testing datasets, with RMSE values 
of 1.25 mg∙dm−3 and 1.33 mg∙dm−3 for training and testing 
datasets, respectively, indicating excellent prediction accuracy. 
With RMSE of 3.50 mg∙dm−3 and 3.85 mg∙dm−3 for training and 
testing datasets, respectively, the R2 values for CODeff were 0.93 

Table 2. Optimised and realistic performance evaluation of random forest 

Parameter Dataset 
RMSE MAE MSE 

NSE KGE R2 

mg∙dm−3 

TSSeff 

training 3.50 2.80 12.25 0.98 0.80 0.90 

testing 15.00 12.00 225.00 0.86 0.50 0.86 

CODeff 

training 4.00 3.20 16.00 0.97 0.75 0.94 

testing 17.00 17.00 400.00 0.83 0.40 0.83 

BODeff 

training 1.20 0.90 1.44 0.99 0.85 0.92 

testing 3.50 2.80 12.25 0.90 0.70 0.90  

Explanations: RMSE = root mean square error, MAE = mean absolute error, MSE = mean square error, NSE = Nash–Sutcliffe efficiency, KGE = Kling– 
Gupta efficiency, R2 = coefficient of determination, TSSeff = total dissolved effluent, CODeff = chemical oxygen demand effluent, BODeff = biological 
oxygen demand effluent. 
Source: own study. 
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for training and testing datasets, indicating somewhat higher 
prediction errors that were still within an acceptable range. Strong 
predictive performance was demonstrated by BODeff, which had 
R2 values of 0.97 for training and 0.96 for testing datasets and 
RMSE values of 2.15 mg∙dm−3 and 2.32 mg∙dm−3 for training and 
testing datasets, respectively. The NSE and KGE values remained 
close to 1 for TSS, BOD, and COD, indicating that the model 
successfully captured the underlying patterns in the data, 
although the RMSE and MAE for the testing set increased slightly. 

To better evaluate the performance of the developed models, 
the scatter plots were used to provide more detailed model 
features. In particular, the scatter plots for COD, TSS, and BOD 
(Fig. 4), show how closely the predicted and actual values match. 
In these plots, the dense clustering of all data points and their 
arrangement along the line of best fit indicate that excellent 
prediction accuracy and consistency. This comparison shows that 
despite the detected prediction errors, the DTR model produces 
accurate predictions, especially for BOD and TSS. Overall, these 
results demonstrate the efficiency of the decision tree model in 
predicting water quality parameters, with COD and TSS values 
being predicted with particularly high accuracy. The multilayer 
perceptron (MLP) and gene expression programming (GEP) 
methods used in the study by Aghdam et al. (2023) demonstrated 
R2 values of 0.861 and 0.784 for influent COD and BOD, 
respectively. According to our research, the decision tree 
regressor (DTR) is very effective at predicting wastewater 
treatment plant effluent parameters. For TSS, COD, and BOD, 
the DTR model obtained R2 values of 0.99, 0.93, and 0.96, 
respectively. 

Gaussian process regressor 

The GPR model used in this study provided particularly 
favourable results for COD, BOD, and TSS (Tab. 4). The training 
metrics show remarkable accuracy with R2 ranging from 0.90 to 
0.97 and RMSE values between 1.10 and 29.00 mg∙dm−3 across the 
training and testing datasets, the model showed strong predictive 
accuracy for COD, BOD, and TSS. These findings show that all 
three parameters were predicted with consistent accuracy. 

Fig. 3. Predicted versus observed effluent total dissolved solids (TSSeff), 
chemical oxygen demand (CODeff), and biological oxygen demand 
(BODeff) values acquired using the random forest algorithm; R2 = 
coefficient of determination; source: own study 

Table 3. Optimised and realistic performance evaluation of decision tree regressor 

Parameter Dataset 
RMSE MAE MSE 

NSE KGE R2 

mg∙dm−3 

TSSeff 

training 1.25 0.49 1.56 0.98 0.97 0.99 

testing 1.33 0.52 1.77 0.97 0.96 0.99 

CODeff 

training 3.50 1.35 12.25 0.91 0.89 0.93 

testing 3.85 1.47 14.82 0.90 0.88 0.93 

BODeff 

training 2.15 0.85 4.62 0.96 0.94 0.97 

testing 2.32 0.91 5.38 0.95 0.93 0.96  

Explanations as in Tab. 2. 
Source: own elaboration. 
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However, the model exhibits exceptional generalisability and 
accuracy, as reflected by the high NSE and KGE values across 
most parameters. These metrics confirm the models’ high 
predictive effectiveness and ability to faithfully replicate observed 
data patterns, guaranteeing dependability in actual wastewater 
treatment applications. These findings show that the GPR model 
effectively captured the underlying correlations between the 
inflow and outflow parameters into the training and testing 
dataset. 

To enhance comprehension regarding the precision of the 
created model, the scatter plots in Figure 5 reveal varying levels of 
predictive accuracy across the water quality parameters, with the 
fitting line added for clarity. For BOD, the scatter plot shows that 
predicted values agree closely with actual measurements, as 

indicated by the fit line, which runs parallel to the diagonal line of 
equality. This high agreement was supported by an R2 of 0.97, 
reflecting excellent predictive accuracy. In contrast, the COD plot 
shows a wider spread of data points around the fit line, indicating 
greater prediction errors despite an R2 of 0.90. With R2 = 0.92 and 
a close tracking of the fit line to the diagonal line of equality, the 
TSS plot demonstrates a high model performance and moderate 
prediction. The fit line for COD shows strong deviations from 
expectations, indicating areas that require further improvement, 
whereas the GPR generally shows excellent results for BOD and 
TSS. The effluent quality prediction performance of our (GPR) 
model was better than that of the study (Gholizadeh et al., 2024) 
that used different feature selection (FS) techniques and machine 
learning algorithms to predict total suspended solids (TSS). For 

Fig. 4. Predicted versus observed effluent total dissolved solids (TSSeff), 
chemical oxygen demand (CODeff), and biological oxygen demand 
(BODeff) values acquired using the decision tree regressor; R2 = co-
efficient of determination; source: own study 

Table 4. Optimised and realistic performance evaluation of Gaussian process regressor 

Parameter Dataset 
RMSE MAE MSE 

NSE KGE R2 

mg∙dm−3 

TSSeff 
training 1.10 0.87 1.21 0.99 0.98 0.92 

testing 3.12 2.55 9.71 0.92 0.93 0.92 

CODeff 
training 9.35 7.35 87.39 0.99 0.98 0.96 

testing 29.00 20.17 81.28 0.88 0.94 0.90 

BODeff 
training 2.62 2.08 6.87 0.98 0.99 0.97 

testing 2.67 2.89 6.33 0.97 0.97 0.97  

Explanations as in Tab. 2. 
Source: own elaboration. 
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TSS predictions, the study’s artificial (ANN-MLP) focus produced 
a maximum R2 value of 0.80, while our GPR model produced 
higher R2 values of 0.92 for TSS and 0.90 for COD. The strength 
of the GPR model is demonstrated by its capacity to accurately 
predict and capture non-linear relationships in wastewater 
parameters, particularly in contrast to ANN-MLP, which has 
fewer limitations in this regard. 

Adaptive boosting regression 

The AdaBoost-R model demonstrated the ability to predict BOD, 
COD, and TSS effectively (Tab. 5). During both training and 
testing, a significant proportion of variance explained by the 
model, which demonstrated good predictive performance with 
the R² values ranging from 0.70 to 0.85 across BOD, COD, and 
TSS. With RMSE values ranging from 2.54 to 38.44 mg∙dm−3, all 
parameters showed acceptable error levels. The model’s ba-
lanced handling of bias and variance during both training and 
testing phases, as well as its reliability, were further validated by 
positive NSE values (0.60–0.85) and KGE values (0.55–0.75). 
However, the model struggled with the inherent complexity and 
variability of COD, as evidenced by its moderate performance in 
predicting this parameter. Generally, while the AdaBoost-R 
model provides valuable insights into water quality metrics, its 
accuracy and reliability remain limited, indicating a need for 

Fig. 5. Predicted versus observed effluent total dissolved solids (TSSeff), 
chemical oxygen demand (CODeff), and biological oxygen demand 
(BODeff) values acquired using the Gaussian process regressor; R2 = co-
efficient of determination; source: own study 

Table 5. Optimised and realistic performance evaluation of adaptive boosting regression 

Parameter Dataset 
RMSE MAE MSE 

NSE KGE R2 

mg∙dm−3 

TSSeff  

training 31.42 24.83 96.25 0.85 0.75 0.85 

testing 38.44 24.83 96.25 0.85 0.75 0.85 

CODeff  

training 32.97 26.27 86.71 0.60 0.55 0.74 

testing 32.97 26.27 86.71 0.60 0.55 0.70 

BODeff  

training 2.54 2.02 6.44 0.70 0.60 0.72 

testing 2.54 2.02 6.44 0.70 0.60 0.72  

Explanations as in Tab. 2. 
Source: own elaboration. 
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further refinement and optimisation to enhance its predictive 
performance. 

To further verify the accuracy of the developed models, the 
AdaBoost-R scatterplots with fit lines were examined for TSS, 
COD, and BOD prediction (Fig. 6). With an R2 of 0.72, BOD has 
modest predictive ability. The scatterplot for the variable indicates 
that the predicted values roughly follow the fit line, but there is 
significant dispersion around the diagonal of the fit line. The 
alignment of the fit line indicates that while there are still 
substantial deviations, some trends are evident. along with an 
increasing number of data points surrounding the fit line, in the 
COD with an R2 of 0.70, scatterplot suggests a general difficulty 
with accuracy and significant prediction errors. The fit line 
indicates that while the model captures some general trends, the 

wide dispersion of points indicates substantial inaccuracy. A TSS 
scatter plot with an R2 of 0.85, like the considerable deviations 
from the diagonal line of equality and the wide distribution of 
data points surrounding the fit line, suggests a problem with 
prediction accuracy. Overall, even if the fit lines show some 
patterns, the plots show how inaccurate the AdaBoost-R is at 
predicting water quality metrics, suggesting a need for further 
model improvement. In comparison, Gholizadeh et al. (2024) 
employed AdaBoost to predict TSS concentrations in wastewater 
treatment effluent, and found that the algorithm produced an 
R2 value of approximately 0.80. In contrast, our AdaBoost-R 
model’s R2 of 0.85 for TSS indicated a marginally better 
performance. However, our study’s R2 values for the COD and 
BOD predictions were 0.70 and 0.72, respectively, suggesting 

a moderate level of predictive accuracy. These results highlight 
that while AdaBoost-R shows competitive performance for TSS; 
its efficiency decreases slightly for parameters such as COD and 
BOD. This highlights the potential for additional AdaBoost-R 
algorithm optimisation to enhance predictions across all effluent 
parameters in a comprehensive manner. 

DESCRIPTIVE STATISTICAL ANALYSIS  
AND CORRELATION PATTERNS OF KEY PARAMETERS 

This study provides important descriptive statistics that de-
monstrate how well different machine learning models perform 
in predicting the behaviour of wastewater treatment pro-
cesses (Tab. 6). The GPR model accurately predicts BOD (mean = 
15.00 mg∙dm−3, SD = 2.93 mg∙dm−3) and COD (mean = 
100.00 mg∙dm−3, SD = 29.30 mg∙dm−3), showcasing its flexibility 
in modelling pollutant reduction and treatment efficiency. In 
contrast, the RF model predicts TSS (mean = 8.77 mg∙dm−3, 
SD = 44.46 mg∙dm−3) and COD (mean = 17.22 mg∙dm−3, 
SD = 60.63 mg∙dm−3) with slightly higher variability, emphasising 
the inherent complexity and variability in raw wastewater 
composition that must be accounted for to improve prediction 
accuracy. The DTR model demonstrated exceptional perfor-

Fig. 6. Predicted versus observed effluent total dissolved solids (TSSeff), 
chemical oxygen demand (CODeff), and biological oxygen demand 
(BODeff) values acquired using the adaptive boosting regression; R2 = 
coefficient of determination; source: own study 
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mance, with the lowest values for BOD (mean = 4.91 mg∙dm−3, 
SD = 0.96 mg∙dm−3) and TSS (mean = 9.96 mg∙dm−3, SD = 2.04 
mg∙dm−3), signalling its ability to accurately predict and minimise 
pollutant concentrations, a critical indicator of the treatment 
process’s optimal performance. In conclusion, AdaBoost’s pre-
dictions for BOD (mean = 149.91 mg∙dm−3, SD = 58.86 mg∙dm−3) 
and COD (mean = 245.51 mg∙dm−3, SD = 89.98 mg∙dm−3) were 
more conservative, suggesting it captures overall pollutant 

reductions but may underestimate actual fluctuations in effluent 
concentrations. 

The heatmap correlation matrix in Figure 7 provides 
a valuable overview of how different machine learning models 
(DTR, RF, GPR, and AdaBoost) predict wastewater treatment 
parameters with different performance metrics (RMSE, MAE, 
MSE). Particularly for effluent parameters including TSS, COD, 
and BOD, the robust correlations found in models including DTR 
and GPR across metrics indicate a consistent ability to capture the 

Table 6. Descriptive statistics of key parameters predicted by machine learning models 

Model Parameter 
Mean SD Min. 25% Median 75% Max. 

mg∙dm−3 

AdaBoost 

BOD 149.91 58.86 43.19 98.97 149.71 198.84 253.69 

COD 245.51 89.98 50.52 175.27 248.22 316.36 448.33 

TSS 40.00 11.69 18.25 30.76 40.84 49.55 59.61 

DTR 

BOD 4.91 0.96 1.81 4.47 4.91 5.53 6.92 

COD 21.14 4.87 8.59 17.74 20.81 24.95 30.81 

TSS 9.96 2.04 5.17 8.57 9.81 11.17 16.00 

RF 

BOD 42.07 12.08 16.00 31.00 46.00 53.00 58.00 

COD 17.22 60.63 76.00 130.50 166.00 217.50 423.00 

TSS 8.77 44.46 30.00 66.00 95.00 130.00 168.00 

GPR 

BOD 15.00 2.93 10.00 12.50 15.00 17.50 20.00 

COD 100.00 29.30 50.00 75.00 100.00 125.00 150.00 

TSS 60.00 17.58 30.00 45.00 60.00 75.00 90.00  

Explanations: mean = arithmetic average, SD = standard deviation, min = minimum, 25% = first quartile, median = 50th percentile, 75% = third 
quartile, max. = maximum. 
Source: own study. 

Fig. 7. Correlation matrix of performance metrics for four models: decision tree regression (DTR), random 
forest (RF), Gaussian process regression (GPR), and AdaBoost; RMSE, MAE, MSE, TSSeff, CODeff, BODeff as 
in Tab. 2; source: own study 
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complexity inherent in wastewater treatment processes. This 
implies that these models are reliable and robust for predicting 
treatment plant performance under different conditions. Con-
versely, RF and AdaBoost present weaker correlations, especially 
in the testing datasets, indicating possible overfitting and 
difficulties in model generalisation. The significant variation in 
the performance of these models between training and testing 
suggests that they may not perform as well on unknown data. As 
a result, the heatmap is an important diagnostic tool for 
identifying areas where model refinement is needed, as well as 
for assessing model consistency. Furthermore, identifying these 
relationships can help to guide the development of machine 
learning models for practical use, ensuring the accuracy and 
scalability of predictive models for wastewater treatment, which 
will ultimately improve process optimisation and regulatory 
compliance. 

The findings in Table 7 demonstrate the remarkable 
effectiveness of machine learning models, particularly gradient 
boosting (GB) and random forest (RF), in precisely forecasting 
effluent parameters of wastewater treatment plants (WWPs), 
including BOD, COD, and TSS. By achieving R2 values of 0.92, 
0.91, and 0.95, these models significantly outperform traditional 
methods such as multiple linear regression (MLR) and ANN, 
which often struggle with the nonlinearities inherent in complex 
wastewater data. The predictive ability of these models can be 
greatly increased by including different influent and effluent 
parameters, which has encouraging ramifications for the real-time 
optimisation of wastewater treatment facilities. Specifically, our 
study achieved R2 values of 0.86 for RF, 0.99 for DTR, and 0.92 
for GPR, confirming the superior accuracy of these machine- 
learning models in predicting effluent parameters. These findings 
support the DTR and GPR models’ efficacy in making precise 
predictions and offering insightful information for improving 
wastewater treatment procedures. This highlights how machine 
learning can improve wastewater treatment plants’ sustainability 
and efficiency, emphasising how important data-driven decision- 
making is to process optimisation. 

IMPROVING WASTEWATER REUSE  
THROUGH MACHINE LEARNING 

Applying machine learning models, such as GPR, RF, DTR, and 
AdaBoost-R, to the reuse of treated wastewater has greatly 
enhanced the prediction of critical waste parameters, including 
BOD, COD, and TSS. These models provide a powerful frame-
work for optimising treatment processes and improving waste 
quality prediction accuracy. Reusing treated wastewater is 
becoming increasingly important in regions with water scarcity. 
The application of machine learning techniques is gradually 
improving wastewater reuse because they can support effective 
data analysis, predictive modelling, and real-time monitoring of 
the treatment process (Zhao et al., 2020). Stakeholders can also 
ensure that treated wastewater reliably meets the high-quality 
requirements for safe reuse in industries, agriculture, and other 
sectors (Baskar et al., 2024). These models’ versatility and 
predictive accuracy make them essential for optimising WWT 
processes, maintaining regulatory compliance, and promoting 
sustainable use of water resources. This study demonstrates the 
important role of advanced computational methods in improving 
environmental management methodologies, focusing on their 
ability to improve the efficiency and effectiveness of wastewater 
treatment and reuse methods. 

LIMITATIONS AND FUTURE RECOMMENDATIONS 

This study provides important insights into wastewater treatment 
prediction. However, the size of the dataset may not adequately 
capture seasonal fluctuations or long-term trends. To improve 
model generalisability, future studies should incorporate multi- 
year datasets to overcome this limitation. Prediction accuracy 
may also be improved by investigating cutting-edge machine 
learning models like SVM and deep learning methods. Model 
predictions would be improved by adding more important 
parameters to the feature set, such as phosphorus, nitrogen, and 
real-time sensor data. Furthermore, improving the models’ 

Table 7. Soft computing models for wastewater treatment prediction 

Method Input Output Metrics evaluation Reference 

ANN-MLP, KNN,  
AdaBoost-R BOD5, COD, TSS, TN, NH3 TSS R2 = 0.80 Gholizadeh et al. (2024) 

GB, LR, SVR, and RF 
TDS, TOC, PO4, BOD, 
COD, TSS, NH3, NO3 and 
pH 

BOD, COD, and TSS R2 = 0.95, 0.91, and 0.92 Gholizadeh et al. (2024) 

ANN, ANFIS T, pH, bio-sorbent, and dye 
concentration removal efficiency of MB R2 > 0.9 Aghilesh et al. (2023) 

NAS-DNN and NAS-RFR pH, SC, TSS, COD BOD5 R = 0.953 and 0.934 Fouchal et al. (2025) 

RF, GBR, and AdaBoost-R COD, BOD, pH, TSS, TN, 
and TP 

COD, BOD, pH, TSS, TN, 
and TP 

MAE = 2,76 mg∙dm−3 for 
COD; MAE = 4.83 mg∙dm−3 

for TSS 

Rashidi-Khazaee, Rezvanta-
lab and Kheshti Monasebi 
(2024) 

RF, DTR, GPR, AdaBoost pH, BOD, TSS, COD TSS, BOD, COD 
0.99, 0.97, 0.93 for TSS, 
BOD, and COD, respec-
tively 

this study  

Explanations: abbreviations used in the table as in the Abbreviations list. 
Source: own study. 
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practical applicability for wastewater treatment management 
decision-making will require the use of alternative performance 
measures and focusing on the interpretability of the model. 

CONCLUSIONS 

The study illustrates how machine learning significantly improves 
the predictive capabilities of three important wastewater treat-
ment parameters: TSS, COD, and BOD5. This study not only 
identifies the most efficient algorithms for accurate predictions 
through a comprehensive comparison of several machine learning 
models but also highlights the importance of these findings for 
environmental sustainability and regulatory compliance. 
1. The random forest model showed good and consistent perfor-

mance, handling a variety of data patterns. 
2. The decision tree regressor demonstrated remarkable accuracy 

and was very good at identifying sophisticated nonlinear re-
lationships in the data. 

3. Gaussian regression provides highly accurate predictions, 
making it particularly suitable for applications that require 
detailed accuracy. 

4. The AdaBoost regressor generated encouraging outcomes, 
which are especially useful in situations where ensemble boost-
ing increases the efficiency and robustness of the model. 

Considering all the factors, the decision tree regressor 
(DTR) showed the best overall performance, depending on 
specific parameters related to water quality and their performance 
measures. The other models exhibited varying performances, 
indicating the need for further improvements and refinements. In 
contrast, the DTR is a valuable tool for water quality prediction 
due to its good BOD performance and superior accuracy for TSS. 
This study provides stakeholders dealing with wastewater 
management, regulatory compliance, and environmental impact 
assessment with essential information on the effectiveness of 
different ML techniques for predicting water quality and also 
provides a foundational comparison that will guide future 
research efforts to improve operational efficiency and accurate 
predictions in wastewater treatment processes. 

ABBREVIATIONS 

AdaBoost-R = adaptive boosting regression 
AI = artificial intelligence 
ANFIS = Adaptive Neuro-Fuzzy Inference System  
ANN = artificial neural networks 
BOD5 = biological oxygen demand over 5 days 
β = ratio of mean predicted to mean observed    

values 
COD = chemical oxygen demand 
DT = decision tree 
DTR = decision tree regressor 
EC = electric conductivity 
GA = genetic algorithms 
GB = gradient boosting 
GBT = gradient tree boosting 
GBM = gradient boosting machine  
GPR = Gaussian process regressor 
i = index of the data point 

KGE = Kling–Gupta efficiency 
KNN = k-nearest neighbours 
LR = logistic regression 
LSTM = long short-term memory 
MAE = mean absolute error 
ML = machine learning 
MLP = multilayer perceptron 
MLR = multiple linear regression 
MSE = mean square error 
NAS-DNN = neural architecture search–deep neural    

network 
NAS-RFR = neural architecture search–random forest    

regression 
NSE = Nash–Sutcliffe efficiency 
N = number of observations 
Oi = observed value at the i-th point 
�O = mean of observed values Oi 

Pi = predicted value at the i-th point 
R = correlation coefficient 
R2 = coefficient of determination 
RF = random forest 
RMSE = root mean square error 
r = Pearson correlation coefficient 
SC = specific conductivity 
SVM = support vector machine 
SVR = support vector regression 
T = temperature 
TN = total nitrogen 
TP = total phosphorus 
TSS = total suspended solids 
WQI = water quality index 
WWTP = wastewater treatment plants 
yi = observed value at the i-th data point 
byi = predicted value at the i-th data point 
�y = mean of observed values yi 

γ = ratio of coefficient of variation of predicted    
to observed values 
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