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Abstract: Flood prediction is a critical tool for disaster management and risk mitigation. Machine learning models are 
viable alternatives to the traditional techniques of flood prediction and analysis, which often fail in capturing the 
complex nonlinear relationship among meteorological parameters. This study evaluated the performance of an artificial 
neural network (ANN) to predict the flooding indicator (surface volume) in the Vaal River Basin using the key 
meteorological parameters: historical records of rainfall, wind speed, humidity, and maximum temperature. A 30-year 
(1994–2024) dataset was collected from the South African Weather Service and preprocessed using standard 
techniques. Hyper-parameter optimisation of the models was carried out using a grid-search method. The ANN model 
was developed by testing different topologies, training algorithms and activation functions at both the hidden and 
output layers. The performance of the models was evaluated using relevant statistical metrics, namely root mean square 
error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), value accounted for (VAE) and 
R-value. The ANN model with tansig-tansig activation function and Levenberg Marquardt training algorithms 
outperformed other architectures with RMSE of 6.245, MAPE of 25.95%, MAE of 4.656, VAE of 7.843 and R-value of 
0.823 at the training. This research demonstrated the viability of machine learning-based flooding predictions based on 
weather variables, contributing to flood risk management strategies.  
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INTRODUCTION 

The Vaal River Basin (South Africa) is susceptible to flood events, 
which are exacerbated by climatic variations and anthropogenic 
activities (Akanbi, Davis and Ndarana, 2020). Along the Vaal 
River, one of the biggest rivers in South Africa, flooding has 
a long history. Floods are common in the Vaal River watershed 
for a number of reasons. Seasonal rainfall occurs in the Vaal River 
watershed, mostly in the summer (November to March). Climate 
change has also led to increasingly unpredictable weather patterns 
and extreme weather events, which have contributed to more 
frequent and intense flooding events (Chen, Chen and Lin, 2020). 
The basin, serving as a critical water source for domestic, 
agricultural, and industrial use, experiences frequent and intense 
flooding, leading to extensive damage and disruption. Inadequate 
maintenance, structural defects, or severe weather can cause 

levees and dams intended to regulate water flow to malfunction, 
resulting in floods. Flooding is a recurring natural disaster that 
significantly impacts communities, economies, and ecosystems 
globally (Mashaly and Fernald, 2020). Floods are among the most 
devastating natural disasters, causing loss of life, economic 
damage, and environmental degradation. The Vaal River Basin, 
spanning multiple provinces in South Africa, plays a critical role 
in the region’s water supply and agriculture. However, its 
susceptibility to flooding necessitates advanced predictive tools 
to minimise adverse impacts. 

Mohamadi, Ehteram and El-Shafie (2020) reported that 
effective flood management and mitigation require accurate 
prediction and modelling of flood occurrences. Traditional 
hydrologic models, which rely on physical and statistical 
approaches, have been instrumental in understanding flood 
dynamics. Machine learning algorithms, in particular, have been 
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shown to be incredibly adept at understanding these complex 
linkages and enhancing prediction accuracy in artificial intelli-
gence (AI) models. Use of artificial neural networks (ANNs) has 
been found to be the preferred machine learning (ML) technique, 
as these techniques outperform most customary approaches 
(Kocher and Kumar, 2021). Flood estimation and prediction 
methods are essential for mitigating risks and managing water 
resources. These methods rely on hydrologic models and, 
increasingly, artificial intelligence (AI) tools to simulate and 
forecast flood events. Hydrologic models simulate the movement 
and distribution of water in a watershed. Key models include 
HEC-HMS (Hydrologic Engineering Centre – Hydrologic 
Modelling System), a widely used model for rainfall-runoff 
simulation and flood forecasting (Jain, Singh and Seth, 2000), and 
the storm water management model (SWMM), designed for 
urban flood modelling, which simulates surface runoff and 
drainage systems (Farina et al., 2023). 

Artificial intelligence (AI) systems improve flood prediction 
by examining vast datasets and spotting intricate patterns (Liu 
et al., 2025). Artificial neural networks (ANNs) are important 
techniques that are useful for predicting rainfall-runoff and 
capturing nonlinear interactions (Mishra and Dwivedi, 2025). 
The long short term memory (LSTM) network can precisely 
predict floods and is ideal for time-series data, such as river flow 
(Li, J. et al., 2024). Flood prediction and estimation have been 
improved with the use of AI technologies and hydrologic models. 
Although hydrologic models offer a tangible foundation, AI tools 
improve precision and effectiveness, facilitating improved flood 
risk management. 

The Vaal River Basin flood modelling difficulties may thus be 
fully addressed by fusing the advantages of both methodologies. 
Using hydrological modelling powered by artificial intelligence can 
assist handling difficult water management issues with improved 
precision, efficacy, and efficiency (Mashaly and Fernald, 2020). 
The term AI refers to a wide variety of computer-related fields that 
are concentrated on developing intelligent models capable of 
performing tasks that were previously completed by people (Chen, 
Chen and Lin, 2020). Few studies have specifically targeted the 
Vaal River Basin. This research aims to bridge the gap by applying 
machine learning techniques tailored to the basin’s unique 
hydrological and geographical characteristics. The study aimed 
to explore the potential of machine learning techniques for flood 
prediction in the Vaal River Basin, using artificial neural networks 
machine learning algorithms. 

Flood prediction in river basins has become increasingly 
critical due to climate change and urbanisation impacts on 
hydrological systems (Bibi and Kara, 2023). The Vaal River Basin, 
as one of South Africa’s most important water resources, faces 
significant flood risks that require advanced prediction methodol-
ogies. This literature review examines the current state of ML 
applications in flood prediction, with a specific focus on the Vaal 
River Basin context. The review synthesises research on traditional 
hydrological modelling approaches, emerging ML techniques, and 
their integration for enhanced flood forecasting capabilities. Key 
findings indicate that while traditional statistical methods have 
been employed in the Vaal River system, there is substantial 
potential for ML-enhanced prediction systems to improve accuracy 
and provide cost-effective solutions for flood risk management. 
Floods represent one of the most destructive natural disasters 
globally, with complex mathematical expressions governing their 

physical processes (Mishra et al., 2022). The Vaal River Basin, 
spanning approximately 196,000 km2 and serving as a critical 
water source for South Africa’s economic heartland, experiences 
periodic flooding events that cause significant socioeconomic 
impacts (Masindi, 2021). Recent flooding events in 2025 have 
highlighted the urgent need for improved prediction capabilities, 
with residents and businesses facing years of recovery from 
economic damage (Cvetković et al., 2024). The advancement of 
machine learning techniques over the past two decades has 
contributed significantly to flood prediction systems, offering 
better performance and cost-effective solutions compared to 
traditional approaches (Jeba and Chitra, 2024). This literature 
review examines the application of ML techniques to flood 
prediction, with particular emphasis on the Vaal River Basin 
context and the broader South African hydrological environment. 

The Vaal River Basin represents South Africa’s most eco-
nomically important catchment, supporting major urban centres 
including Johannesburg and Pretoria (Remilekun et al., 2021). The 
basin’s hydrology is significantly influenced by the Lesotho 
Highlands Water Project, launched in 1997, which augments 
water supply through a three-phase construction involving four 
major dams (Sayedi, 2023). This infrastructure development has 
altered the natural flow regimes, creating complex hydrological 
conditions that challenge traditional flood prediction methods. 

Statistical analysis of historical flood flows in the Vaal 
River has revealed critical patterns for flood risk assessment. 
Mamphwe (2021), identified approximately a 3% annual 
exceedance probability for major flood events based on historical 
flow data. However, the continued development of the catchment 
with urban expansion and infrastructure development has 
modified these risk profiles, necessitating updated prediction 
methodologies that can account for non-stationary conditions. 
Recent flooding events, including the 2025 incidents that affected 
crops and necessitated house evacuations, demonstrate the 
ongoing vulnerability of the basin to extreme hydrological events 
(Boboye and Dorasamy, 2025). The complex interplay between 
natural variability, climate change impacts, and anthropogenic 
modifications requires sophisticated modelling approaches that 
can capture these multi-scale interactions. 

Historical approaches to flood prediction in the Vaal River 
Basin have relied primarily on statistical analysis of flood flows 
(Baloyi, 2022). These methods utilise frequency analysis, extreme 
value distributions, and regression techniques to establish 
relationships between meteorological inputs and flood outcomes. 
While these approaches provide valuable baseline capabilities, 
they are limited in their ability to capture non-linear relationships 
and changing basin conditions. Physical-based hydrological 
models, such as MIKE-11, have been employed to simulate flood 
processes through mathematical representation of physical laws 
governing water movement (Anuruddhika et al., 2025). These 
models require detailed parameter calibration and extensive data 
inputs, making them computationally intensive and challenging 
to implement in data-scarce regions. 

Machine learning methods have demonstrated significant 
potential in advancing flood prediction systems through their 
ability to model complex, non-linear relationships in hydrological 
data (Kumar et al., 2023b). These techniques can process large 
datasets, identify patterns in multi-dimensional data spaces, and 
provide probabilistic forecasts that support decision-making 
processes. The ANNs have been widely applied in flood 
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prediction due to their ability to approximate complex non-linear 
functions (Tabbussum and Dar, 2021). The ANNs can process 
multiple input variables, including precipitation, temperature, soil 
moisture, and antecedent flow conditions, to predict flood events. 
Their universal approximation capabilities make them suitable for 
capturing the complex relationships inherent in hydrological 
systems. 

The LSTM networks represent a significant advancement in 
time series prediction for hydrological applications (Choi et al., 
2022). These recurrent neural networks can capture long-term 
dependencies in sequential data, making them particularly suitable 
for flood prediction, where antecedent conditions significantly 
influence current responses. Recent comparative studies have 
shown LSTM models among the most effective approaches for 
water level prediction in river systems (Li H. et al., 2024). 

Random forest (RF) algorithms have demonstrated strong 
performance in flood susceptibility mapping and prediction tasks. 
The RF methods can handle high-dimensional datasets, provide 
feature importance rankings, and offer robust performance across 
different hydrological conditions (Cappelli et al., 2023). Their 
ensemble nature helps reduce overfitting and provides uncertainty 
estimates for predictions. Advanced gradient boosting techniques, 
including LightGBM and CatBoost, have shown promising results 
in flood risk assessment applications (Xu et al., 2023). These 
methods can capture complex interactions between variables and 
provide high accuracy in flood susceptibility mapping tasks. 

Support vector machines (SVM) offer robust performance 
in flood prediction through their ability to handle high- 
dimensional data and provide good generalisation capabilities 
(Haddad and Rahman, 2020). The SVM methods are particularly 
effective in scenarios with limited training data, making them 
suitable for data-scarce regions. The integration of satellite-based 
observations offers significant potential for enhancing flood 
prediction capabilities in the Vaal River Basin (Masindi, 2021). 
Remote sensing products can provide spatially distributed 
information on precipitation, soil moisture, vegetation condi-
tions, and flood extent, supplementing ground-based observa-
tions (Schoener and Stone, 2020). 

The transition from research applications to operational 
flood forecasting systems requires consideration of computational 
efficiency, data latency, and system reliability (Kumar et al., 
2023a). The ML models must be capable of processing real-time 
data streams and providing timely predictions to support 
emergency response activities. Integration of ML-based flood 
prediction with early warning systems requires careful attention 
to communication protocols, stakeholder needs, and decision 
support tools (Khan et al., 2025). The development of user- 
friendly interfaces and clear communication of prediction 
uncertainty is essential for effective implementation. Operational 
ML systems require robust computational infrastructure capable 
of handling data processing, model execution, and result 
dissemination (Matthew, Joshua and Philip, 2025). Cloud-based 
platforms and distributed computing approaches offer scalable 
solutions for operational flood forecasting. 

The “black box” nature of many machine learning 
algorithms presents challenges for hydrological applications 
where process understanding is important (Lange and Sippel, 
2020). Explainable artificial intelligence techniques and hybrid 
approaches that combine ML with physical understanding are 
needed to address these concerns. Machine learning models 

trained on specific basins or time periods may have limited 
transferability to different conditions (Ma et al., 2024). Transfer 
learning approaches and domain adaptation techniques offer 
potential solutions for improving model generalisation. 

The application of machine learning techniques to flood 
prediction in the Vaal River Basin represents a significant 
opportunity to enhance current forecasting capabilities and 
improve flood risk management (Antwi-Agyakwa, Afenyo and 
Angnuureng, 2023). While traditional statistical approaches have 
provided valuable baseline capabilities, the complex, non-linear 
nature of hydrological processes in the basin requires more 
sophisticated modelling approaches. Current research demon-
strates that machine learning techniques, particularly long short- 
term memory networks, random forest algorithms, and hybrid 
approaches, offer substantial improvements in prediction accu-
racy and computational efficiency (Sun et al., 2021). However, 
successful implementation requires careful attention to data 
quality, model validation, and operational considerations. The 
unique characteristics of the Vaal River Basin, including its 
economic importance, complex infrastructure, and transbound-
ary components, present both challenges and opportunities for 
machine learning applications. Recent flooding events have 
highlighted the urgent need for improved prediction capabilities, 
creating a compelling case for investment in machine learning- 
based forecasting systems (Kumar et al., 2023a). 

This section explores the utilisation of AI techniques in 
flood modelling within the Vaal River Basin. Kumar et al. (2023a) 
reported that recent floods in several parts of southern India 
caused significant harm to both persons and property. South 
Africa’s Vaal River Basin has exceptional flood risks because of its 
distinct hydrological and climatic features. Accurate flood 
forecasting models are necessary for efficient flood mitigation 
and management. The results showed that the projected model 
provided high precision in projecting flood flow and successfully 
assisted in building a rainfall–runoff model. In order to anticipate 
the daily erratic stream flow of Thrace County, which is located in 
northwest Turkey, Sharma and Srivastava (2021) used an artificial 
neural network (ANN), an adaptive-network-based fuzzy in-
ference system (ANFIS), and an SVM. They also compared the 
results with those of local linear regression (LLR) and dynamic 
log-likelihood ratio (DLLR). Results indicated that when 
estimating daily sporadic stream flow, ANN, ANFIS, and SVM 
performed better than the LLR and DLLR models. 

When it came to forecasting the dam water level, SVM 
performed better with various input combinations based on 
performance evaluation factors. In their 2001 study, Thakur and 
Konde (2001) illustrated several aspects of flood forecasting, 
including the usage of models that had already been utilised, the 
development of input gathering techniques, and the display of 
results, uncertainties, and flood warnings. The goal of this study is 
to investigate how well an ANN model can forecast flood discharge. 

Conventional approaches, including hydrological models 
and statistical methods, have been widely used for flood 
prediction. These models rely on physical and empirical relation-
ships among hydrological parameters, but often struggle to 
capture non-linear dependencies. Recent advances in machine 
learning have introduced data-driven methods that excel 
in handling large datasets and uncovering complex patterns. 
Techniques such as ANN, SVM, and random forests have been 
applied to flood prediction with promising results. 
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MATERIALS AND METHODS 

STUDY AREA 

The interior of South Africa is home to the economically 
important Vaal River Basin, where there is a high concentration 
of mining, industrial, residential, and agricultural activity. It is the 
largest tributary of the Orange River in South Africa. The 
river has its source near Breyten in Mpumalanga province, east of 
Johannesburg and about 30 km north of Ermelo and only 241 km 
from the Indian Ocean. It then flows westwards to its conjunction 
with the Orange River, southwest of Kimberly in the North Cape. 
It is 1,458 km long, and forms the border between Mpumalanga, 
Gauteng and North West provinces on its north bank, and Free 
State in its South. The Vaal River Basin’s geographical 
coordinates vary significantly along its length, as it is a large 
basin. The source of the Vaal River is near Breyten in 
Mpumalanga, approximately at 26°17'59.7"S 29°09'12.7"E. 
The Vaal River then flows southwest, eventually meeting the 
Orange River near Douglas, with coordinates roughly 29°4'15"S 
23°38'10"E. The map of the Vaal River Basin with different land, 
as indicated by Masindi and Abiye (2018) in their study, is shown 
in Figure 1. Vaal River has the following characteristic according 
to Akpotu (2021): discharge 125 m3∙s–1. It has its source from the 
Drakensberg in the city of Johannesburg, Kimberly, with a basic 
size of 196,438 km2 and etymology of 1 Hai “pale” + 1 Arib 
“river”. Water supplies, agriculture, and industry all depend on 
the Vaal River Basin, one of the most important river systems in 
South Africa. It covers an area of around 196,438 km2 and crosses 
multiple provinces, including Gauteng, the Free State, Northwest, 

and Mpumalanga. The Vaal River Basin, located in South Africa, 
exhibits a semi-arid to subtropical climate, with significant 
regional variations due to differences in altitude, topography, 
and latitude. Average climate characteristics with a temperature 
during summer (November–February) 20–30°C (can exceed 35°C 
in low-lying areas), winter (June–August) 5–18°C (frost occurs in 
higher elevations) and rainfall of 400–800 mm∙y–1 (higher in 
eastern highveld, lower in western regions). Summer-dominated 
rainfall (October–April), with thunderstorms common, evapora-
tion is high, often exceeding rainfall (especially in the west). 

DATA COLLECTION AND PROCESSING 

Flood prediction is critical for disaster mitigation in the Vaal 
River Basin, where variable rainfall, land-use changes, and 
increasing urbanisation exacerbate flood risks. Surface volume 
with other weather parameters (wind speed, humidity, maximum 
temperature) was used as a flood indicator for the flood pre-
diction in the study area. Traditional hydrological models often 
struggle with real-time adaptability, making machine learning 
(ML) a promising alternative due to its ability to process complex, 
nonlinear relationships in environmental data (Jeba and Chitra, 
2024). In this study, 30-year (1994–2024) data were sourced from 
the South African Weather Service in the period from 1994 to 
2024 for meteorological parameters such as wind speed, humidity, 
maximum temperature and historical records of rainfall. These 
meteorological variables were chosen due to their potential 
influence on flooding dynamics. Additionally, historical flooding 
indicator (surface volume) data spanning from 1994 to 2013 were 

Fig. 1. Map showing the Vaal River Basin with different land uses; source: Masindi and Abiye (2018) 
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collected to complement the meteorological dataset. Surface 
volume serves as a fundamental physical control on flood 
generation and propagation in the Vaal River Basin (Baloyi, 
2022). Its influence operates through multiple mechanisms, 
including temporary storage, hydraulic routing, and antecedent 
condition effects. Successful flood prediction requires a compre-
hensive understanding of these processes. The incorporation of 
surface volume as a primary parameter in flood prediction models 
for the Vaal River Basin is scientifically justified through multiple 
theoretical, empirical, and practical considerations (Funke, 2025). 
This justification stems from the fundamental role surface storage 
plays in hydrological processes, the unique characteristics of the 
Vaal River Basin, and the demonstrated improvement in 
predictive accuracy when surface volume is explicitly considered. 

In flood prediction, artificial neural networks (ANNs) serve 
as a predictive model rather than a direct “performance 
indicator”. However, their predictive accuracy (e.g., root mean 
square error (RMSE), Nash–Sutcliffe efficiency (NSE)) can be 
used as a key performance indicator (KPI) to evaluate flood 
forecasting systems. The ANNs are trained to map input 
parameters (e.g., precipitation, upstream flow, land use) to output 
indicators (e.g., flood occurrence, water level, inundation extent). 
The ANNs provide a robust KPI-driven framework for flood 
prediction in the Vaal River Basin, with quantifiable accuracy 
metrics guiding emergency response. The disparity in timeframes 
between the datasets was addressed through data alignment and 
preprocessing techniques to ensure compatibility and coherence 
for model development. This comprehensive dataset forms the 
foundation for the predictive modelling of flooding occurrence in 
the Vaal River Basin using meteorological parameters. In Table 1, 
the statistical summary and properties of the relevant variables 
and parameters are represented. 

A correlation heatmap in Figure 2 was generated to examine 
the relationships between meteorological parameters and flooding 
parameters (surface volume). This visualisation illustrates the 
linear relationships among wind speed, humidity, maximum 
temperature, and flooding parameter (surface volume). The 
heatmap illustrates the degree and direction of correlations, 
facilitating the identification of model predictors. 

DATA PREPROCESSING 

The raw data set comprising several years of multiple variables 
was extracted and prepared in a format ready for the model. To 
achieve an accurate model, the following preprocessing steps were 
carried out on the data. 

Outlier removal 

The dataset comprised about 30 years (1994–2024) of historical 
records of meteorological parameters and environmental condi-
tions. Owing to the many years of record, many variations exist 
across different seasons, years, and environmental conditions, 
especially between the years 1996 and 1998. Over such a long 
period, unusual events or measurement errors may introduce 
outliers – data points that do not reflect typical patterns or 
behaviours. Over several years, the variables concerned may involve 
anomalous readings, possibly due to recording mistakes or extreme 
events. A great variation was particularly noted in the values of 
flooding indices (surface volume), which is the range of 8–4000 m3, 
making the outlier critical for the machine learning model. This 
disparity could be attributed to factors such as floods or equipment 
malfunctions, which may misrepresent the true relationship 
between the weather parameters and flooding occurrence. 

In this study, two statistical methods of outlier removal were 
combined logically with the “OR” operator in the MATLAB 
(“isoutlier” function) environment to reduce the noise in the data 
and achieve a reliable model. These methods are as follows. 
� Interquartile range (IQR) based method. This approach uses 

the IQR between the 75th percentile (Q3) and the 25th percentile 
(Q1). The values in the data which do not fall within 
a predefined threshold are described as outliers. 

IQR ¼ Q3 � Q1 ð1Þ

The outlier threshold is defined as follows. 

Outlier xð Þ ¼

true; if x < Q1 � 1:5 IQR

true; if x >Q1þ 1:5 IQR

false; otherwise

8
<

:
ð2Þ

where: IQR = interquartile range. 
� Median method. This method defines the threshold as 

a multiple of the mean absolute deviation as follows. 

Outlier xð Þ ¼
true; if x � median Xð Þj j > k �MAD

false; otherwise

�

ð3Þ

where: MAD = mean absolute deviation. 

Table 1. Statistical features of the weather parameters and the 
flooding parameter (surface volume) 

Parameters 
/ statistical 
properties 

Wind 
speed  

(m∙s–1) 

Humidity  
(g∙m–3) 

Maximum  
tempera- 
ture (°C) 

Surface 
volume 

(m3) 

Maximum 11.500 100.00 36.0 3.08 

Minimum 0.000 0.00 2.40 – 

Mean 2.670 38.34 3.11 – 

Standard deviation 1.969 19.215 5.165 –  

Source: own elaboration. 

Fig. 2. Correlation heatmap for the model data; source: own elaboration 
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Z-score normalisation 

This is another important preprocessing step for scaling the 
features in the range of zero (0) mean and one (1) standard 
deviation. This can be achieved using the following equation. 

Xscaled ¼
X � �

�
ð4Þ

where: Xscaled = the scaled (standardised) value, X = the original 
data point or value, μ = the mean (average) of the dataset, σ = the 
standard deviation. 

The target output normalisation is carried out as follows. 

yscaled ¼
y � mean yð Þ

�
ð5Þ

where: yscaled = the scaled (standardised) version of y, y = the 
original data variable or vector, mean(y) = the arithmetic mean 
(average) of all values in y. 

MODEL DEVELOPMENT 

Artificial neural network 

The ANN is an example of a non-linear prediction (NLP) 
method, which has been extensively studied and applied to 
a variety of problems, including meteorological simulation and 
forecasting (Waqas et al., 2023). Nourani, Paknezhad and Tanaka 
(2021) conducted a study on prediction interval estimation 
methods for artificial neural networks-based modelling of hydro- 
climate processes, a review. The use of artificial neural networks is 
a popular data-driven technique that has been frequently applied 
to a broad range of fields (Ma et al., 2023). An artificial neural 
network is able to handle non-linearity and automatically adjusts 
to new information, while generally requiring little computational 
effort (Jamsheed and Iqbal, 2023). The behaviour of a neural 
network is defined by the way its individual computing elements 
are connected and by the strength of those connections. These 
weighted connections are automatically adjusted during training 
of the network. Artificial neural networks with one hidden layer 
are commonly used in modelling since it has been found that 
more than one hidden layer does not yield any significant 
improvement in performance on a network with a single hidden 
layer (Uzair and Jamil, 2020). 

Artificial neural network development 

The artificial neural network model was inspired by the biological 
nervous system and has allowed scientists and researchers to 
build mathematical models of neurons in order to simulate neural 
behaviour (Thakur and Konde, 2021). Models of a neuron were 
introduced in the early 1940s by McCulloch and Pitts by which 
they described simple logic for neural networks, and were later 
credited with a learning law, the perceptron learning algorithm 
(Sharma and Srivastava, 2021). The research on the limits to what 
one-layer perceptron can compute was demonstrated by Minsky 
and Pappert with the use of elegant mathematics (Worden et al., 
2023). The back-propagation algorithm developed by McClelland 
and Rumelhart, is the most popular learning algorithm for the 
training of multilayer perceptron (Zhang et al., 2007). 

The ANNs were first introduced to water resources research 
for their use to predict monthly water consumption and to 

estimate occurrences of floods. Since then, ANNs have been used 
for a number of different water resource applications, which 
include time-series prediction for rainfall forecasting, rainfall- 
runoff processes and river salinity. The ANNs have also been used 
for modelling soil and water table fluctuations, pesticide move-
ment in soils, water table management and water quality 
management (Omeka et al., 2024). The ANN contains a large 
number of simple neuron-like processing elements and a large 
number of weighted connections between the elements. The 
weights of connections encode the knowledge embedded in the 
network. The “intelligence” of a neural network emerges from the 
collective behaviour of neurons, each of which performs only very 
limited operations. Each individual neuron finds a solution by 
working in parallel (Ha and Tang, 2022). In Figure 3, a flowchart 
for data preprocessing and model development for the study is 
shown. 

Model training, validation and testing 

Raw data from different resources, along with datasets, were 
collected and preprocessed to check, clean and organise for 
analysis. This step involved handling missing values and 
converting data into a usable format. Generally, the data were 
split into two parts – one to train the model and the other to the 
trained model. After the above steps, the model is built, and 
different algorithms are used to check for accuracies, and 
depending upon those accuracies, the higher accuracy algorithm 
is selected for the final model. Prediction is nothing but applying 
a trained model to new or unseen data to generate predictions. 
Here, in the case of flood forecasting, it means predicting rainfall 
and analysing whether there is a flood or not. 

HYPER-PARAMETER OPTIMISATION 

We have used a grid search method to obtain the optimal 
combination of hyperparameters, such as the hidden layer 
configuration and the learning rate for a good performance of 
the ANN model. In the grid search approach, the sets of 
predefined hyperparameters were tested systematically, while the 

Fig. 3. Flowchart for data preprocessing and model development; source: 
own elaboration 
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best combination was selected based on the lowest error 
threshold. This selected network is also used for the final model 
training and testing. In this study, our tuning search space 
involved six combinations as follows. 

Ss ¼ Hl : 3ð Þ � Lr : 2ð Þ ¼ C ð6Þ

where: Ss = search space of the hyper-parameter optimisation, 
Hl = hidden layer: 3 of the hyper-parameter optimisation, 
Lr = learning rate: 2 of the hyper-parameter optimisation, 
C = combination of the hyper-parameter optimisation. 

The combination of hidden layer = [23 33] [24 53] [35 53] 
was tested while learning rates were adjusted between 0.1 and 0.00 
according to Ibrahim et al. (2025) as provided in the neural 
computing and applications publishing model. At each hidden 
layer architecture, different combinations of activation functions 
at the hidden and output layers with varying combinations of 
training algorithms were tested. Other specified model hyper-
parameters are provided in Table 2 as suggested by Ibrahim et al. 
(2025). 

PERFORMANCE EVALUATION 

Relevant statistical metrics such as root mean square error 
(RMSE), mean absolute error (MAE), mean absolute percentage 
error (MAPE), and variance accounted for (VAF) have been 
selected to assess the performance of the developed ANN model 
for predicting flooding based on inputs such as wind speed, 
humidity, and maximum temperature. These metrics were 
computed using Equations 7–10. 

MAPE ¼
1

N

XN

k¼1

yk � byk

yk

�
�
�
�

�
�
�
�100% ð7Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

k¼1 yk � byk½ �

N

s

ð8Þ

MAE ¼

PN
k¼1 byk � ykj j

N
ð9Þ

VAF ¼ 1 �
var byk � ykð Þ

var ykð Þ

� �

100 ð10Þ

where: N = the number of data points (observation), k = predicted 
(forecasted) value at time period, yk = total number of time 
period, byk = the mean of the total number of time period, 
var = variations of data points. 

This study focuses more on novel model design rather than 
performance comparison. In Table 3, the literature-based com-
parative performance table for flood prediction methods is shown. 

RESULTS AND DISCUSSION 

ARTIFICIAL NEURAL NETWORK MODEL RESULTS:  
MODEL PERFORMANCE AND EVALUATION 

In Table 4, the statistical metrics results of artificial neural 
networks at the training and testing phase of different 
hyperparameter combinations at an optimal hidden layer 

Table 2. Hyperparameter settings of the artificial neural network 
architecture 

Hyper-parameter Value 

Epochs 500 

Minimum gradient 1∙10–6 

Data splitting 70:15:15 

Regularisation terms (λ) 0.1 

Transfer function 

· hyperbolic tangent sigmoid (tansig) 
· logarithmic sigmoid (logsig) 
· pure linear (purelin) 
· short maximum (softmax) 

Training algorithm 

· Levenberg–Marquardt backpropagation 
(trainlm) 

· scaled conjugate gradient (trainscg) 
· Bayesian regularisation (trainbr)  

Source: own elaboration based on Ibrahim et al. (2025). 

Table 3. Machine learning methods performance in flood prediction 

Method Study location / basin NSE RMSE R2/R Reference 

ANN Upper Baro watershed, 
Ethiopia 0.98 24 m3∙s–1 0.99 Belina, Kassa and Masinde (2025) – integrating machine 

learning 

SVM Upper Baro watershed, 
Ethiopia 0.97 27 m3∙s–1 0.98 Belina, Kebede and Masinde (2024) – comparative analysis 

PSO-SVM hybrid Barak River Basin 0.99334 0.04962 0.98918 Samantaray, Sahoo and Agnihotri (2023) – prediction of flood 
discharge 

SVR Morocco (data-scarce 
basin) 0.72–0.85 25–40 m3∙s–1 0.80–0.88 Bargam et al. (2024) – evaluation of SVR and RF 

RF large-scale flood simu-
lation 0.65–0.82 28–52 m3∙s–1 0.75–0.87 Sasanapuri, Dhanya and Gosain (2025) – a surrogate ML 

model using RF random forest evaluation  

Explanations: ANN = artificial neural network, SVM = support vector machine, SVR = support vector regression, RF = random forest, PSO = particle 
swarm optimisation, RMSE = root mean square error, NSE = Nash–Sutcliffe efficiency, R = Pearson correlation coefficient, R2 = coefficient of 
determination. 
Source: own elaboration. 

90 Adebayo T. Baker, Megersa O. Dinka, Sophia S. Rwanga 

© 2025. The Authors. Published by Polish Academy of Sciences (PAN) and Institute of Technology and Life Sciences – National Research Institute (ITP – PIB). 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) 



architecture of [23, 38] are represented. The choice of 23 and 
36 neurons in the two hidden layers appears optimal, as the best 
performance metrics align with this configuration in sub-model 13. 
No particular trend was observed in the performance metrics 
across all the sub-models with different hyper-parameter combina-
tions. During training, the lowest error values, as indicated by 
a lowest root mean square error (RMSE) value, are achieved by the 
model using the tansig transfer function at the hidden layer, tansig 
at the output layer, and Levenberg–Marquardt training algorithm. 
The RMSE value of 6.245 indicates better performance in 
minimising errors. Further indication of the model’s low error 
prediction is depicted in its mean absolute percentage error 
(MAPE) and mean absolute error (MAE), values of 25.957 and 
4.656, respectively, establishing its superior accuracy. Further to 
this, the model delivers the highest variance accounted for (VAF) 
and R values of 7.843 and 0.832, indicating a stronger correlation 
between the actual and predicted values of the flooding parameter 
(surface volume). The above result was in support of the findings 
of Bergstra and Bengio (2012) from the random search for hyper- 
parameter optimisation. The R-value reaches its peak at 0.832 for 
sub-model 13, indicating the strongest linear relationship between 
predictions and actual values. Other models with lower R-values 
(<0.75) struggle to capture the relationships accurately, particularly 
those with purelin. Sub-model 13 records the lowest MAE (4.656), 
followed by other models employing trainlm. Networks with tansig 
and logsig transfer functions exhibit moderate MAE values 
compared to those with purelin. The above agrees with the result 
of Netto et al. (2021), where they emphasised the importance of 
selecting appropriate architecture, transfer functions, and algo-
rithms to achieve such results. 

During testing, a trend similar to the training phase was 
observed in the testing phase, but with a slightly less accurate 
prediction owing to the slightly higher error values compared to 
the training phase. The results indicate a marginal decline in 
performance for the identical combination (tansig-tansig with 
trainlm) during the training phase, with RMSE rising to 8.174, 
MAPE to 49.758, and MAE to 6.986. The pipeline automati-
cally handles the preprocessing, training and evaluation while 
providing a detailed performance breakdown for different data 
segments. This gives concrete evidence of how well the model 
performs in extreme values versus the normal range. As an 
alternative to the high MAPE linked outliers and model over-
generalisation, data augmentation is used in conjunction with the 
synthetic minority oversampling technique (SMOTE) regression, 
which generates synthetic samples between extreme samples and 
neighbours. However, the VAF and R-values of 44.407 and 0.7205 
suggest acceptable generalisation. Other combinations exhibit 
a mix of performance, but none outperform the tansig-tansig with 
trainlm combination across testing metrics. Although the testing 
MAPE (49.758) and MAE (6.986) exceed those in training, these 
figures remain competitive, demonstrating the model’s capacity to 
generalise learnt patterns to novel data. The R-values range from 
0.6897 to 0.7205 at sub-models 1 and 13, respectively, reflecting 
varying degrees of correlation between predictions and actual 
values. Also, based on R-values, models with tansig at both hidden 
and output layers showcase better performance, indicating stronger 
predictive relationships. While trainlm contributes to achieving 
better R-values, trainscg struggles to match this performance. 
Models utilising trainlm training methods frequently get superior 
VAF values, highlighting their capacity for generalisation. The 

Table 4. Statistical metrics result of the artificial neural network at the training and testing phase 

Transfer function 
Training 

algorithm 

Training performance metrics Testing performance metrics 

hidden 
layer 

output 
layer RMSE MAPE MAE VAF R RMSE MAPE MAE VAF R 

softmax logsig trainbr 7.153 31.649 5.023 12.543 0.763 9.758 49.657 8.112 47.116 0.6897 

tansig purelin trainbr 6.905 25.162 4.263 9.812 0.696 9.054 50.076 7.856 47.913 0.7035 

tansig tansig trainbr 7.624 32.688 5.689 10.325 0.734 9.382 51.346 7.168 48.521 0.7176 

logsig logsig trainscg 8.167 30.904 5.262 8.919 0.689 8.811 49.045 8.635 46.705 0.7013 

logsig logsig trainlm 8.455 28.053 6.128 11.012 0.745 9.848 53.023 7.812 45.914 0.6326 

logsig tansig trainscg 7.725 27.554 5.605 8.362 0.823 9.632 49.756 8.065 45.513 0.6721 

tansig purelin trainscg 6.854 29.562 4.521 9.065 0.804 8.906 50.325 7.164 44.906 0.6875 

tansig purelin trainlm 7.611 30.736 5.824 7.993 0.758 9.908 52.316 7.357 47.345 0.7137 

purelin softmax trainbr 7.279 33.689 6.438 8.124 0.816 9.975 51.045 8.996 46.052 0.7032 

tansig logsig trainscg 6.457 35.175 5.066 9.445 0.768 9.561 50.987 7.289 45.844 0.7113 

softmax tansig trainbr 7.418 27.997 5.257 10.843 0.805 9.935 50.765 8.065 46.147 0.6975 

purelin logsig trainlm 7.783 28.183 5.209 7.904 0.762 8.875 51.564 7.623 47.182 0.7044 

tansig tansig trainlm 6.245 25.957 4.656 7.843 0.832 8.174 49.758 6.986 44.407 0.7205 

softmax softmax trainlm 7.521 27.883 4.978 9.543 0.811 9.355 49.765 7.858 47.746 0.7234 

softmax tansig trainscg 6.972 27.533 5.107 12.205 0.751 9.643 50.726 8.345 44.986 0.6864 

logsig tansig trainbr 7.8155 25.983 5.723 11.235 0.787 9.246 51.353 7.618 45.579 0.6742  

Explanations: MAPE = mean absolute percentage error, MAE = mean absolute error, VAF = variance accounted for, RMSE, R as in Tab. 3. 
Source: own study. 
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MAE ranges from 6.986 to 8.635, signifying variations in absolute 
predictive accuracy. Models trained with trainlm often get a lower 
MAE than those trained with trainbr or trainscg. 

The flood categorised boundary conditions in artificial neural 
network-based flood prediction in the Vaal River Basin used 
hydrological thresholds with the discharge rates 2.801 m3∙s–1 based 
on return periods of 10-year floods. Temporal boundaries with 
a lead time of 72 hours for operational flood prediction and data 
input periods using historical data spanning 30 years were used for 
training. Seasonal variations with wet season (October–March) 
against dry season patterns were used. Spatial boundaries of the 
upstream catchment limit with major tributaries and extend 
downstream until the confluence with the Orange River. These 
threshold values were calibrated using historical flood records and 
validated against observed flood events in the Vaal River Basin to 
categorise when the river basin is flooded and not flooded. 

LINEARITY BETWEEN EXPERIMENT AND PREDICTED DATA 

In addition to the evaluation of statistical metrics, performance 
during the training and testing phases is illustrated by a scatter 
plot comparing the predicted and actual values of the flooding 
parameter (surface volume), as shown in Figure 4. The scatter 
plot demonstrates that the artificial neural network (ANN) 
model has learned the overall trends and patterns in the training 
data with a strong R-value of 0.832. The model performs well in 
capturing the central trend and variability of the training data, as 
evidenced by the strong R-value and the alignment of many data 
points along the fit line. The scatter plot suggests the ANN model 
is moderately effective in predicting flooding occurrence based on 
the meteorological variables. The data points show a positive 
correlation with the experimental values, but are scattered around 
the fit line. For lower experimental values (<20), the predictions 
align closely with the actual values. As the experimental values 
increase (>30), the scatter becomes more pronounced, and the 
model shows some deviation from the ideal relationship. The data 
points exhibit significant dispersion around the fit line, which 
denotes the optimal relationship. This indicates that although the 
ANN model forecasts trends, there exists variability and a certain 
level of inaccuracy in specific predictions. 

Beyond the statistical metrics evaluation, the testing phase 
performance is demonstrated using a scatter plot of the predicted 
and actual values of the flooding parameter (surface volume). The 
scatter plot suggests the ANN model is moderately effective in 
predicting flooding based on the weather variables. The R-value 
of 0.720 measures the magnitude of the linear relationship and 
exhibits a moderate positive correlation between the actual and 
predicted surface volume values. 

ANALYSIS OF RESIDUAL 

In Figure 5a, the testing comparison plot of the actual and 
predicted values of the flooding parameter (surface volume) is 
represented. The predicted values are concentrated around the 
central range of the experimental values (approximately 15–25). 
The experimental values show a wide range from approximately 
5 to over 50. The predicted values, however, are compressed into 
a narrower band, indicating that the ANN model does not fully 
capture the variability in the training data. For extreme 
experimental values (e.g., >30 or <10), the model does not 
adequately predict the corresponding values, suggesting that the 
ANN might have overgeneralised during training. The predicted 
values agree with the overall trend of the actual values, although 
they display discrepancies at some points. This could be 
attributed to overestimation and underestimation of some model 
hyperparameters (Adeleke and Jen, 2022). 

In Figure 5d, the testing comparison plot of the actual and 
predicted values of flooding indices (surface volume) is repre-
sented. In Figure 5d, the actual surface volume values exhibit 
a significant variability, reflecting the inherent complexity of the 
dataset. The predicted values agree with the overall trend of the 
actual values, although they display discrepancies at some points. 
Moreover, substantial disparities between actual and predicted 
flooding indices (surface volume) are evident in the outliers when 
surface volume diverges substantially from the mean. For most of 
the samples, the predictions are adequately consistent with the 
actual values, indicating that the model effectively reflects the 
underlying patterns of the dataset. In addition to the comparison of 
actual and predicted flooding indices (surface volume), the 
histogram has a relatively symmetric distribution centred at zero, 

Fig. 4. Scattered plot of actual and artificial neural network predicted flooding indicator (surface volume) at the: a) training, b) testing; source: own 
study 
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suggesting the model lacks substantial systematic bias (e.g., 
continuous overprediction or underprediction) (Figs. 5c and 5f). 
Nevertheless, the residuals exhibit a little dispersion, signifying 
variability in prediction errors. The MSE and RMSE in Figures 5b 
and 5e provide a more interpretable metric in the same units as the 
target variable. The histogram has a very symmetric distribution 
centred around zero, indicating that the model does not include 
significant systematic bias (e.g., persistent overprediction or 
underprediction). Nonetheless, the residuals display some disper-
sion, indicating diversity in prediction mistakes. It presents the 
MSE and RMSE, offering more comprehensible statistics in the 
same units as the target variable. The close correlation between 
actual and expected values in the mid-range indicates high 
predictive accuracy for standard data points. 

The histogram of the residual plot in Figure 6 gives insight 
into the performance of the model during training. In Figure 6a, 
the scattered plot of the actual and predicted flooding indicator is 
shown. The residuals exhibit a symmetrical distribution centred 
around 0, with the greatest concentration of residuals occurring 
close to the zero residual line. This suggests that the ANN model 
does not demonstrate substantial consistent bias in overestimat-
ing or underestimating values during the training phase. The 

predominant residuals fall within the interval from −10 to 10, 
with a pronounced peak at 0. This indicates that most of the 
predictions are near the actual values, showcasing commendable 
accuracy throughout training. The residuals range from around 
−12 on the left to +22 on the right, exhibiting lower frequencies at 
the extremes. These outliers signify instances where the ANN 
failed to precisely forecast the flooding parameter (surface 
volume). The maximum frequency is observed at residuals 
around zero, with more than 500 samples exhibiting little 
prediction errors. This verifies that the model effectively identifies 
the overarching patterns of the training data. 

To further understand the predictive behaviour of the ANN 
at the testing phase, the histogram of residuals in Figure 6B is 
critical. The histogram has considerable symmetry, suggesting 
that the residual errors are uniformly distributed around zero. 
This symmetry indicates that the model does not exhibit a bias 
towards overprediction or underprediction. The distribution of 
residuals indicates a certain level of variance in the errors, 
suggesting opportunities for enhancing the model’s generalisation 
capacity. The majority of residuals fall within a range from −10 to 
+10, signifying that the model’s predictions are often near the 
actual values. The peak of the histogram is near zero residuals, 

Fig. 5. Artificial neural network testing comparison plot and error diagram of the actual and predicted flooding indicator (surface volume) during: a), 
b), c) training; d), e), f) testing phases; MSE = mean square error, RMSE = root mean square error; source: own study 

Fig. 6. Histogram of residuals at the phases: a) training, b) testing; source: own study 
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suggesting that the ANN model is unbiased and does not 
consistently overpredict or underpredict the flooding indices 
(surface volume). Although the majority of residuals are 
concentrated around zero, outliers are reaching −25 and +15. 
These signify outliers where the model had difficulties in precisely 
forecasting the flooding indices (surface volume). 

Furthermore, the box plot in Figure 7 gives more insight 
into the prediction trends of the ANN model at the testing phase 
for flooding indices (surface volume) predictions. The red line in 
each box denotes the median (50th percentile) value of the 
dataset. The medians of both actual and projected values are 
closely aligned, indicating that the ANN model well represents 
the data’s central tendency. The blue boxes denote the 
interquartile range (25th to 75th percentile). 

In modelling complex, non-linear scenarios such as flooding 
occurrence involving multiple variables based on meteorological 
parameters, the observed trends in the performance metrics align 
with known theoretical and practical dynamics of the neural 
network model. In this research, ANN maintains lower RMSE 
and MAE, showcasing consistent performance across data 
representations. The ANNs learn representations of the input 
data through hidden layers, enabling them to identify and 
emphasise relevant features. This is particularly useful when input 
variables interact in non-trivial ways, as in meteorological data 
(Li, J. et al., 2024). In addition, ANN consistently performs well in 
both training and testing phases, despite changes in data 
distribution. The ANNs can scale with large datasets, adapting 
through iterative learning processes like backpropagation, which 
minimises error across the entire dataset. This adaptability makes 
them particularly suited for dynamic and complex datasets like 
weather scenarios (Kocher and Kumar, 2021). 

CONCLUSIONS 

This study demonstrated the effectiveness of machine learning in 
predicting floods in the Vaal River Basin. Its goal was to create 
a computational intelligence model that would use artificial neural 
networks to better anticipate floods, and it was successful in doing 
so. In order to anticipate the likelihood of a flood, we looked at the 
use of artificial neural networks, a non-linear auto-regressive 

machine learning technique trained on patterns of previous rainfall 
levels. A 30-year (1994–2024) dataset was collected from the South 
African Weather Service and preprocessed using standard 
techniques. Hyper-parameter optimisation of the models was 
carried out using a grid-search method. The artificial neural 
network (ANN) model was developed by testing different 
topologies, training algorithms and activation functions at both 
the hidden and output layers. The performance of the models was 
evaluated using relevant statistical metrics, namely root mean 
square error (RMSE), mean absolute percentage error (MAPE), 
mean absolute error (MAE), value accounted for (VAE) and R- 
value. The ANN model with tansig-tansig activation function and 
Levenberg–Marquardt training algorithms outperformed other 
architectures with RMSE of 6.245, MAPE of 25.95%, MAE of 
4.656, VAE of 7.843 and R-value of 0.823 at the training. This 
research demonstrated the viability of machine learning-based 
flooding predictions based on weather variables, contributing to 
flood risk management strategies. 

Since RMSE imposes a greater penalty on substantial errors 
compared to MAE, the proximity of RMSE and MAE suggests 
that significant errors are comparatively few in both phases. 
A high MAPE during testing indicates that the model has 
difficulty making accurate predictions for certain severe or high- 
variability instances in the testing set. The decline in R-value 
signifies a reduction in the model’s predictive efficacy on testing 
data, perhaps attributable to overfitting or inadequate representa-
tion of testing circumstances in the training dataset. 

Overall, the study indicates that the model does not exhibit 
a bias towards overprediction or underprediction. The majority of 
residuals fall within a range from –10 to +10, signifying that the 
model’s predictions are often near the actual values. 

Future research should focus on: 
– taking climate change scenarios into account; 
– increasing the forecasts’ geographic resolution; 
– creating comprehensible resources for local communities and 

policymakers; 
– establishing a performance baseline for comparison. 
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