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Abstract: Flood prediction is a critical tool for disaster management and risk mitigation. Machine learning models are
viable alternatives to the traditional techniques of flood prediction and analysis, which often fail in capturing the
complex nonlinear relationship among meteorological parameters. This study evaluated the performance of an artificial
neural network (ANN) to predict the flooding indicator (surface volume) in the Vaal River Basin using the key
meteorological parameters: historical records of rainfall, wind speed, humidity, and maximum temperature. A 30-year
(1994-2024) dataset was collected from the South African Weather Service and preprocessed using standard
techniques. Hyper-parameter optimisation of the models was carried out using a grid-search method. The ANN model
was developed by testing different topologies, training algorithms and activation functions at both the hidden and
output layers. The performance of the models was evaluated using relevant statistical metrics, namely root mean square
error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), value accounted for (VAE) and
R-value. The ANN model with tansig-tansig activation function and Levenberg Marquardt training algorithms
outperformed other architectures with RMSE of 6.245, MAPE of 25.95%, MAE of 4.656, VAE of 7.843 and R-value of
0.823 at the training. This research demonstrated the viability of machine learning-based flooding predictions based on

weather variables, contributing to flood risk management strategies.
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INTRODUCTION

The Vaal River Basin (South Africa) is susceptible to flood events,
which are exacerbated by climatic variations and anthropogenic
activities (Akanbi, Davis and Ndarana, 2020). Along the Vaal
River, one of the biggest rivers in South Africa, flooding has
a long history. Floods are common in the Vaal River watershed
for a number of reasons. Seasonal rainfall occurs in the Vaal River
watershed, mostly in the summer (November to March). Climate
change has also led to increasingly unpredictable weather patterns
and extreme weather events, which have contributed to more
frequent and intense flooding events (Chen, Chen and Lin, 2020).
The basin, serving as a critical water source for domestic,
agricultural, and industrial use, experiences frequent and intense
flooding, leading to extensive damage and disruption. Inadequate
maintenance, structural defects, or severe weather can cause

levees and dams intended to regulate water flow to malfunction,
resulting in floods. Flooding is a recurring natural disaster that
significantly impacts communities, economies, and ecosystems
globally (Mashaly and Fernald, 2020). Floods are among the most
devastating natural disasters, causing loss of life, economic
damage, and environmental degradation. The Vaal River Basin,
spanning multiple provinces in South Africa, plays a critical role
in the region’s water supply and agriculture. However, its
susceptibility to flooding necessitates advanced predictive tools
to minimise adverse impacts.

Mohamadi, Ehteram and El-Shafie (2020) reported that
effective flood management and mitigation require accurate
prediction and modelling of flood occurrences. Traditional
hydrologic models, which rely on physical and statistical
approaches, have been instrumental in understanding flood
dynamics. Machine learning algorithms, in particular, have been
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shown to be incredibly adept at understanding these complex
linkages and enhancing prediction accuracy in artificial intelli-
gence (AI) models. Use of artificial neural networks (ANNSs) has
been found to be the preferred machine learning (ML) technique,
as these techniques outperform most customary approaches
(Kocher and Kumar, 2021). Flood estimation and prediction
methods are essential for mitigating risks and managing water
resources. These methods rely on hydrologic models and,
increasingly, artificial intelligence (AI) tools to simulate and
forecast flood events. Hydrologic models simulate the movement
and distribution of water in a watershed. Key models include
HEC-HMS (Hydrologic Engineering Centre - Hydrologic
Modelling System), a widely used model for rainfall-runoff
simulation and flood forecasting (Jain, Singh and Seth, 2000), and
the storm water management model (SWMM), designed for
urban flood modelling, which simulates surface runoff and
drainage systems (Farina et al., 2023).

Artificial intelligence (AI) systems improve flood prediction
by examining vast datasets and spotting intricate patterns (Liu
et al., 2025). Artificial neural networks (ANNs) are important
techniques that are useful for predicting rainfall-runoff and
capturing nonlinear interactions (Mishra and Dwivedi, 2025).
The long short term memory (LSTM) network can precisely
predict floods and is ideal for time-series data, such as river flow
(Li, J. et al., 2024). Flood prediction and estimation have been
improved with the use of Al technologies and hydrologic models.
Although hydrologic models offer a tangible foundation, AI tools
improve precision and effectiveness, facilitating improved flood
risk management.

The Vaal River Basin flood modelling difficulties may thus be
fully addressed by fusing the advantages of both methodologies.
Using hydrological modelling powered by artificial intelligence can
assist handling difficult water management issues with improved
precision, efficacy, and efficiency (Mashaly and Fernald, 2020).
The term AT refers to a wide variety of computer-related fields that
are concentrated on developing intelligent models capable of
performing tasks that were previously completed by people (Chen,
Chen and Lin, 2020). Few studies have specifically targeted the
Vaal River Basin. This research aims to bridge the gap by applying
machine learning techniques tailored to the basin’s unique
hydrological and geographical characteristics. The study aimed
to explore the potential of machine learning techniques for flood
prediction in the Vaal River Basin, using artificial neural networks
machine learning algorithms.

Flood prediction in river basins has become increasingly
critical due to climate change and urbanisation impacts on
hydrological systems (Bibi and Kara, 2023). The Vaal River Basin,
as one of South Africa’s most important water resources, faces
significant flood risks that require advanced prediction methodol-
ogies. This literature review examines the current state of ML
applications in flood prediction, with a specific focus on the Vaal
River Basin context. The review synthesises research on traditional
hydrological modelling approaches, emerging ML techniques, and
their integration for enhanced flood forecasting capabilities. Key
findings indicate that while traditional statistical methods have
been employed in the Vaal River system, there is substantial
potential for ML-enhanced prediction systems to improve accuracy
and provide cost-effective solutions for flood risk management.
Floods represent one of the most destructive natural disasters
globally, with complex mathematical expressions governing their

physical processes (Mishra et al., 2022). The Vaal River Basin,
spanning approximately 196,000 km?® and serving as a critical
water source for South Africa’s economic heartland, experiences
periodic flooding events that cause significant socioeconomic
impacts (Masindi, 2021). Recent flooding events in 2025 have
highlighted the urgent need for improved prediction capabilities,
with residents and businesses facing years of recovery from
economic damage (Cvetkovi¢ et al., 2024). The advancement of
machine learning techniques over the past two decades has
contributed significantly to flood prediction systems, offering
better performance and cost-effective solutions compared to
traditional approaches (Jeba and Chitra, 2024). This literature
review examines the application of ML techniques to flood
prediction, with particular emphasis on the Vaal River Basin
context and the broader South African hydrological environment.

The Vaal River Basin represents South Africa’s most eco-
nomically important catchment, supporting major urban centres
including Johannesburg and Pretoria (Remilekun et al., 2021). The
basin’s hydrology is significantly influenced by the Lesotho
Highlands Water Project, launched in 1997, which augments
water supply through a three-phase construction involving four
major dams (Sayedi, 2023). This infrastructure development has
altered the natural flow regimes, creating complex hydrological
conditions that challenge traditional flood prediction methods.

Statistical analysis of historical flood flows in the Vaal
River has revealed critical patterns for flood risk assessment.
Mamphwe (2021), identified approximately a 3% annual
exceedance probability for major flood events based on historical
flow data. However, the continued development of the catchment
with urban expansion and infrastructure development has
modified these risk profiles, necessitating updated prediction
methodologies that can account for non-stationary conditions.
Recent flooding events, including the 2025 incidents that affected
crops and necessitated house evacuations, demonstrate the
ongoing vulnerability of the basin to extreme hydrological events
(Boboye and Dorasamy, 2025). The complex interplay between
natural variability, climate change impacts, and anthropogenic
modifications requires sophisticated modelling approaches that
can capture these multi-scale interactions.

Historical approaches to flood prediction in the Vaal River
Basin have relied primarily on statistical analysis of flood flows
(Baloyi, 2022). These methods utilise frequency analysis, extreme
value distributions, and regression techniques to establish
relationships between meteorological inputs and flood outcomes.
While these approaches provide valuable baseline capabilities,
they are limited in their ability to capture non-linear relationships
and changing basin conditions. Physical-based hydrological
models, such as MIKE-11, have been employed to simulate flood
processes through mathematical representation of physical laws
governing water movement (Anuruddhika et al., 2025). These
models require detailed parameter calibration and extensive data
inputs, making them computationally intensive and challenging
to implement in data-scarce regions.

Machine learning methods have demonstrated significant
potential in advancing flood prediction systems through their
ability to model complex, non-linear relationships in hydrological
data (Kumar et al., 2023b). These techniques can process large
datasets, identify patterns in multi-dimensional data spaces, and
provide probabilistic forecasts that support decision-making
processes. The ANNs have been widely applied in flood
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prediction due to their ability to approximate complex non-linear
functions (Tabbussum and Dar, 2021). The ANNs can process
multiple input variables, including precipitation, temperature, soil
moisture, and antecedent flow conditions, to predict flood events.
Their universal approximation capabilities make them suitable for
capturing the complex relationships inherent in hydrological
systems.

The LSTM networks represent a significant advancement in
time series prediction for hydrological applications (Choi et al.,
2022). These recurrent neural networks can capture long-term
dependencies in sequential data, making them particularly suitable
for flood prediction, where antecedent conditions significantly
influence current responses. Recent comparative studies have
shown LSTM models among the most effective approaches for
water level prediction in river systems (Li H. et al., 2024).

Random forest (RF) algorithms have demonstrated strong
performance in flood susceptibility mapping and prediction tasks.
The RF methods can handle high-dimensional datasets, provide
feature importance rankings, and offer robust performance across
different hydrological conditions (Cappelli et al., 2023). Their
ensemble nature helps reduce overfitting and provides uncertainty
estimates for predictions. Advanced gradient boosting techniques,
including LightGBM and CatBoost, have shown promising results
in flood risk assessment applications (Xu et al, 2023). These
methods can capture complex interactions between variables and
provide high accuracy in flood susceptibility mapping tasks.

Support vector machines (SVM) offer robust performance
in flood prediction through their ability to handle high-
dimensional data and provide good generalisation capabilities
(Haddad and Rahman, 2020). The SVM methods are particularly
effective in scenarios with limited training data, making them
suitable for data-scarce regions. The integration of satellite-based
observations offers significant potential for enhancing flood
prediction capabilities in the Vaal River Basin (Masindi, 2021).
Remote sensing products can provide spatially distributed
information on precipitation, soil moisture, vegetation condi-
tions, and flood extent, supplementing ground-based observa-
tions (Schoener and Stone, 2020).

The transition from research applications to operational
flood forecasting systems requires consideration of computational
efficiency, data latency, and system reliability (Kumar et al,
2023a). The ML models must be capable of processing real-time
data streams and providing timely predictions to support
emergency response activities. Integration of ML-based flood
prediction with early warning systems requires careful attention
to communication protocols, stakeholder needs, and decision
support tools (Khan et al., 2025). The development of user-
friendly interfaces and clear communication of prediction
uncertainty is essential for effective implementation. Operational
ML systems require robust computational infrastructure capable
of handling data processing, model execution, and result
dissemination (Matthew, Joshua and Philip, 2025). Cloud-based
platforms and distributed computing approaches offer scalable
solutions for operational flood forecasting.

The “black box” nature of many machine learning
algorithms presents challenges for hydrological applications
where process understanding is important (Lange and Sippel,
2020). Explainable artificial intelligence techniques and hybrid
approaches that combine ML with physical understanding are
needed to address these concerns. Machine learning models

trained on specific basins or time periods may have limited
transferability to different conditions (Ma et al., 2024). Transfer
learning approaches and domain adaptation techniques offer
potential solutions for improving model generalisation.

The application of machine learning techniques to flood
prediction in the Vaal River Basin represents a significant
opportunity to enhance current forecasting capabilities and
improve flood risk management (Antwi-Agyakwa, Afenyo and
Angnuureng, 2023). While traditional statistical approaches have
provided valuable baseline capabilities, the complex, non-linear
nature of hydrological processes in the basin requires more
sophisticated modelling approaches. Current research demon-
strates that machine learning techniques, particularly long short-
term memory networks, random forest algorithms, and hybrid
approaches, offer substantial improvements in prediction accu-
racy and computational efficiency (Sun et al., 2021). However,
successful implementation requires careful attention to data
quality, model validation, and operational considerations. The
unique characteristics of the Vaal River Basin, including its
economic importance, complex infrastructure, and transbound-
ary components, present both challenges and opportunities for
machine learning applications. Recent flooding events have
highlighted the urgent need for improved prediction capabilities,
creating a compelling case for investment in machine learning-
based forecasting systems (Kumar et al., 2023a).

This section explores the utilisation of Al techniques in
flood modelling within the Vaal River Basin. Kumar et al. (2023a)
reported that recent floods in several parts of southern India
caused significant harm to both persons and property. South
Africa’s Vaal River Basin has exceptional flood risks because of its
distinct hydrological and climatic features. Accurate flood
forecasting models are necessary for efficient flood mitigation
and management. The results showed that the projected model
provided high precision in projecting flood flow and successfully
assisted in building a rainfall-runoff model. In order to anticipate
the daily erratic stream flow of Thrace County, which is located in
northwest Turkey, Sharma and Srivastava (2021) used an artificial
neural network (ANN), an adaptive-network-based fuzzy in-
ference system (ANFIS), and an SVM. They also compared the
results with those of local linear regression (LLR) and dynamic
log-likelihood ratio (DLLR). Results indicated that when
estimating daily sporadic stream flow, ANN, ANFIS, and SVM
performed better than the LLR and DLLR models.

When it came to forecasting the dam water level, SVM
performed better with various input combinations based on
performance evaluation factors. In their 2001 study, Thakur and
Konde (2001) illustrated several aspects of flood forecasting,
including the usage of models that had already been utilised, the
development of input gathering techniques, and the display of
results, uncertainties, and flood warnings. The goal of this study is
to investigate how well an ANN model can forecast flood discharge.

Conventional approaches, including hydrological models
and statistical methods, have been widely used for flood
prediction. These models rely on physical and empirical relation-
ships among hydrological parameters, but often struggle to
capture non-linear dependencies. Recent advances in machine
learning have introduced data-driven methods that excel
in handling large datasets and uncovering complex patterns.
Techniques such as ANN, SVM, and random forests have been
applied to flood prediction with promising results.
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MATERIALS AND METHODS
STUDY AREA

The interior of South Africa is home to the economically
important Vaal River Basin, where there is a high concentration
of mining, industrial, residential, and agricultural activity. It is the
largest tributary of the Orange River in South Africa. The
river has its source near Breyten in Mpumalanga province, east of
Johannesburg and about 30 km north of Ermelo and only 241 km
from the Indian Ocean. It then flows westwards to its conjunction
with the Orange River, southwest of Kimberly in the North Cape.
It is 1,458 km long, and forms the border between Mpumalanga,
Gauteng and North West provinces on its north bank, and Free
State in its South. The Vaal River Basin’s geographical
coordinates vary significantly along its length, as it is a large
basin. The source of the Vaal River is near Breyten in
Mpumalanga, approximately at 26°17'59.7"S 29°09'12.7"E.
The Vaal River then flows southwest, eventually meeting the
Orange River near Douglas, with coordinates roughly 29°4'15"S
23°38'10"E. The map of the Vaal River Basin with different land,
as indicated by Masindi and Abiye (2018) in their study, is shown
in Figure 1. Vaal River has the following characteristic according
to Akpotu (2021): discharge 125 m?>.s7L. It has its source from the
Drakensberg in the city of Johannesburg, Kimberly, with a basic
size of 196,438 km® and etymology of 1 Hai “pale” + 1 Arib
“river”. Water supplies, agriculture, and industry all depend on
the Vaal River Basin, one of the most important river systems in
South Africa. It covers an area of around 196,438 km? and crosses
multiple provinces, including Gauteng, the Free State, Northwest,

and Mpumalanga. The Vaal River Basin, located in South Africa,
exhibits a semi-arid to subtropical climate, with significant
regional variations due to differences in altitude, topography,
and latitude. Average climate characteristics with a temperature
during summer (November-February) 20-30°C (can exceed 35°C
in low-lying areas), winter (June-August) 5-18°C (frost occurs in
higher elevations) and rainfall of 400-800 mm-y™' (higher in
eastern highveld, lower in western regions). Summer-dominated
rainfall (October-April), with thunderstorms common, evapora-
tion is high, often exceeding rainfall (especially in the west).

DATA COLLECTION AND PROCESSING

Flood prediction is critical for disaster mitigation in the Vaal
River Basin, where variable rainfall, land-use changes, and
increasing urbanisation exacerbate flood risks. Surface volume
with other weather parameters (wind speed, humidity, maximum
temperature) was used as a flood indicator for the flood pre-
diction in the study area. Traditional hydrological models often
struggle with real-time adaptability, making machine learning
(ML) a promising alternative due to its ability to process complex,
nonlinear relationships in environmental data (Jeba and Chitra,
2024). In this study, 30-year (1994-2024) data were sourced from
the South African Weather Service in the period from 1994 to
2024 for meteorological parameters such as wind speed, humidity,
maximum temperature and historical records of rainfall. These
meteorological variables were chosen due to their potential
influence on flooding dynamics. Additionally, historical flooding
indicator (surface volume) data spanning from 1994 to 2013 were
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Fig. 1. Map showing the Vaal River Basin with different land uses; source: Masindi and Abiye (2018)
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collected to complement the meteorological dataset. Surface
volume serves as a fundamental physical control on flood
generation and propagation in the Vaal River Basin (Baloyi,
2022). Its influence operates through multiple mechanisms,
including temporary storage, hydraulic routing, and antecedent
condition effects. Successful flood prediction requires a compre-
hensive understanding of these processes. The incorporation of
surface volume as a primary parameter in flood prediction models
for the Vaal River Basin is scientifically justified through multiple
theoretical, empirical, and practical considerations (Funke, 2025).
This justification stems from the fundamental role surface storage
plays in hydrological processes, the unique characteristics of the
Vaal River Basin, and the demonstrated improvement in
predictive accuracy when surface volume is explicitly considered.

In flood prediction, artificial neural networks (ANNSs) serve
as a predictive model rather than a direct “performance
indicator”. However, their predictive accuracy (e.g., root mean
square error (RMSE), Nash-Sutcliffe efficiency (NSE)) can be
used as a key performance indicator (KPI) to evaluate flood
forecasting systems. The ANNs are trained to map input
parameters (e.g., precipitation, upstream flow, land use) to output
indicators (e.g., flood occurrence, water level, inundation extent).
The ANNs provide a robust KPI-driven framework for flood
prediction in the Vaal River Basin, with quantifiable accuracy
metrics guiding emergency response. The disparity in timeframes
between the datasets was addressed through data alignment and
preprocessing techniques to ensure compatibility and coherence
for model development. This comprehensive dataset forms the
foundation for the predictive modelling of flooding occurrence in
the Vaal River Basin using meteorological parameters. In Table 1,
the statistical summary and properties of the relevant variables
and parameters are represented.

A correlation heatmap in Figure 2 was generated to examine
the relationships between meteorological parameters and flooding
parameters (surface volume). This visualisation illustrates the
linear relationships among wind speed, humidity, maximum
temperature, and flooding parameter (surface volume). The
heatmap illustrates the degree and direction of correlations,
facilitating the identification of model predictors.

DATA PREPROCESSING

The raw data set comprising several years of multiple variables
was extracted and prepared in a format ready for the model. To
achieve an accurate model, the following preprocessing steps were
carried out on the data.

Table 1. Statistical features of the weather parameters and the
flooding parameter (surface volume)

Parameters Wind 1. Maximum | Surface
e Humidity
/ statistical speed 3 tempera- | volume
. -1 (gm™) o 3
properties (m-s™) ture (°C) (m>)
Maximum 11.500 100.00 36.0 3.08
Minimum 0.000 0.00 2.40 -
Mean 2.670 38.34 3.11 -
Standard deviation 1.969 19.215 5.165 -

Source: own elaboration.
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Fig. 2. Correlation heatmap for the model data; source: own elaboration

Outlier removal

The dataset comprised about 30 years (1994-2024) of historical
records of meteorological parameters and environmental condi-
tions. Owing to the many years of record, many variations exist
across different seasons, years, and environmental conditions,
especially between the years 1996 and 1998. Over such a long
period, unusual events or measurement errors may introduce
outliers — data points that do not reflect typical patterns or
behaviours. Over several years, the variables concerned may involve
anomalous readings, possibly due to recording mistakes or extreme
events. A great variation was particularly noted in the values of
flooding indices (surface volume), which is the range of 8-4000 m°,
making the outlier critical for the machine learning model. This
disparity could be attributed to factors such as floods or equipment
malfunctions, which may misrepresent the true relationship
between the weather parameters and flooding occurrence.

In this study, two statistical methods of outlier removal were
combined logically with the “OR” operator in the MATLAB
(“isoutlier” function) environment to reduce the noise in the data
and achieve a reliable model. These methods are as follows.

e Interquartile range (IQR) based method. This approach uses
the IQR between the 75" percentile (Q3) and the 25t percentile
(Q1). The values in the data which do not fall within
a predefined threshold are described as outliers.

IQR=Q3-Q1 1)
The outlier threshold is defined as follows.
true, if < @1 —1.5IQR

true, if z >Q1+ 1.5 IQR (2)
false, otherwise

Outlier (z) =

where: IQR = interquartile range.
e Median method. This method defines the threshold as
a multiple of the mean absolute deviation as follows.

true, if |z —median(X)| > k- MAD
false, otherwise

Outlier (z) = { 3)

where: MAD = mean absolute deviation.
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Z-score normalisation

This is another important preprocessing step for scaling the
features in the range of zero (0) mean and one (1) standard
deviation. This can be achieved using the following equation.

X —
KNcaled = Tﬂ (4)

where: X;aeq = the scaled (standardised) value, X = the original
data point or value, ¢ = the mean (average) of the dataset, o = the
standard deviation.

The target output normalisation is carried out as follows.

Yscaled =

where: yscaeqa = the scaled (standardised) version of y, y = the
original data variable or vector, mean(y) = the arithmetic mean
(average) of all values in y.

MODEL DEVELOPMENT

Artificial neural network

The ANN is an example of a non-linear prediction (NLP)
method, which has been extensively studied and applied to
a variety of problems, including meteorological simulation and
forecasting (Wagqas et al., 2023). Nourani, Paknezhad and Tanaka
(2021) conducted a study on prediction interval estimation
methods for artificial neural networks-based modelling of hydro-
climate processes, a review. The use of artificial neural networks is
a popular data-driven technique that has been frequently applied
to a broad range of fields (Ma et al., 2023). An artificial neural
network is able to handle non-linearity and automatically adjusts
to new information, while generally requiring little computational
effort (Jamsheed and Igbal, 2023). The behaviour of a neural
network is defined by the way its individual computing elements
are connected and by the strength of those connections. These
weighted connections are automatically adjusted during training
of the network. Artificial neural networks with one hidden layer
are commonly used in modelling since it has been found that
more than one hidden layer does not yield any significant
improvement in performance on a network with a single hidden
layer (Uzair and Jamil, 2020).

Artificial neural network development

The artificial neural network model was inspired by the biological
nervous system and has allowed scientists and researchers to
build mathematical models of neurons in order to simulate neural
behaviour (Thakur and Konde, 2021). Models of a neuron were
introduced in the early 1940s by McCulloch and Pitts by which
they described simple logic for neural networks, and were later
credited with a learning law, the perceptron learning algorithm
(Sharma and Srivastava, 2021). The research on the limits to what
one-layer perceptron can compute was demonstrated by Minsky
and Pappert with the use of elegant mathematics (Worden et al.,
2023). The back-propagation algorithm developed by McClelland
and Rumelhart, is the most popular learning algorithm for the
training of multilayer perceptron (Zhang et al., 2007).

The ANNs were first introduced to water resources research
for their use to predict monthly water consumption and to

estimate occurrences of floods. Since then, ANNSs have been used
for a number of different water resource applications, which
include time-series prediction for rainfall forecasting, rainfall-
runoff processes and river salinity. The ANNs have also been used
for modelling soil and water table fluctuations, pesticide move-
ment in soils, water table management and water quality
management (Omeka et al., 2024). The ANN contains a large
number of simple neuron-like processing elements and a large
number of weighted connections between the elements. The
weights of connections encode the knowledge embedded in the
network. The “intelligence” of a neural network emerges from the
collective behaviour of neurons, each of which performs only very
limited operations. Each individual neuron finds a solution by
working in parallel (Ha and Tang, 2022). In Figure 3, a flowchart
for data preprocessing and model development for the study is
shown.

Fig. 3. Flowchart for data preprocessing and model development; source:
own elaboration

Model training, validation and testing

Raw data from different resources, along with datasets, were
collected and preprocessed to check, clean and organise for
analysis. This step involved handling missing values and
converting data into a usable format. Generally, the data were
split into two parts — one to train the model and the other to the
trained model. After the above steps, the model is built, and
different algorithms are used to check for accuracies, and
depending upon those accuracies, the higher accuracy algorithm
is selected for the final model. Prediction is nothing but applying
a trained model to new or unseen data to generate predictions.
Here, in the case of flood forecasting, it means predicting rainfall
and analysing whether there is a flood or not.

HYPER-PARAMETER OPTIMISATION

We have used a grid search method to obtain the optimal
combination of hyperparameters, such as the hidden layer
configuration and the learning rate for a good performance of
the ANN model. In the grid search approach, the sets of
predefined hyperparameters were tested systematically, while the
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best combination was selected based on the lowest error
threshold. This selected network is also used for the final model
training and testing. In this study, our tuning search space
involved six combinations as follows.
Ss=(Hl:3)-(Lr:2)=C (6)

where: Ss = search space of the hyper-parameter optimisation,
HI = hidden layer: 3 of the hyper-parameter optimisation,
Lr =
C = combination of the hyper-parameter optimisation.

The combination of hidden layer = [23 33] [24 53] [35 53]
was tested while learning rates were adjusted between 0.1 and 0.00
according to Ibrahim et al. (2025) as provided in the neural
computing and applications publishing model. At each hidden
layer architecture, different combinations of activation functions
at the hidden and output layers with varying combinations of
training algorithms were tested. Other specified model hyper-
parameters are provided in Table 2 as suggested by Ibrahim et al.
(2025).

learning rate: 2 of the hyper-parameter optimisation,

Table 2. Hyperparameter settings of the artificial neural network
architecture

Hyper-parameter Value
Epochs 500
Minimum gradient 1.107°
Data splitting 70:15:15
Regularisation terms (1) | 0.1

- hyperbolic tangent sigmoid (tansig)
- logarithmic sigmoid (logsig)

- pure linear (purelin)

- short maximum (softmax)

Transfer function

- Levenberg-Marquardt backpropagation
(trainlm)

- scaled conjugate gradient (trainscg)

- Bayesian regularisation (trainbr)

Training algorithm

Source: own elaboration based on Ibrahim et al. (2025).

PERFORMANCE EVALUATION

Relevant statistical metrics such as root mean square error
(RMSE), mean absolute error (MAE), mean absolute percentage
error (MAPE), and variance accounted for (VAF) have been
selected to assess the performance of the developed ANN model
for predicting flooding based on inputs such as wind speed,
humidity, and maximum temperature. These metrics were
computed using Equations 7-10.

1Ny — i

MAPE = =Y [ —%100% 7
N}; m 6 (7)

N ~

N

_ Zk\:l‘?ﬁ - Z/k|
MAE = N 9)
VAF =1-— {w} 100 (10)

var(yy)

where: N = the number of data points (observation), k = predicted
(forecasted) value at time period, y;, = total number of time
period, ¥ = the mean of the total number of time period,
var = variations of data points.

This study focuses more on novel model design rather than
performance comparison. In Table 3, the literature-based com-
parative performance table for flood prediction methods is shown.

RESULTS AND DISCUSSION

ARTIFICIAL NEURAL NETWORK MODEL RESULTS:
MODEL PERFORMANCE AND EVALUATION

In Table 4, the statistical metrics results of artificial neural
networks at the training and testing phase of different
hyperparameter combinations at an optimal hidden layer

Table 3. Machine learning methods performance in flood prediction

Method Study location / basin NSE RMSE R*/R Reference

ANN Upper ‘Baro watershed, 0.98 24 mi.s! 0.99 Behnfi, Kassa and Masinde (2025) - integrating machine
Ethiopia learning

SVM gti}i)zlr:i]zam watershed, 0.97 27 m’s7! 0.98 Belina, Kebede and Masinde (2024) - comparative analysis

PSO-SVM hybrid | Barak River Basin 0.99334 0.04962 09891 | Samantaray, Sahoo and Agnihotri (2023) - prediction of flood

discharge

Morocco (data-scarce 3 1 .

SVR basin) 0.72-0.85 |[25-40 m’-s 0.80-0.88 |[Bargam et al. (2024) - evaluation of SVR and RF

RE large—scale flood simu- 0.65-0.82 |28-52 m2s! | 0.75-0.87 Sasanapup, Dhanya and Gosain (2025). - a surrogate ML
lation model using RF random forest evaluation

Explanations: ANN = artificial neural network, SVM = support vector machine, SVR = support vector regression, RF = random forest, PSO = particle
swarm optimisation, RMSE = root mean square error, NSE = Nash-Sutcliffe efficiency, R = Pearson correlation coefficient, R? = coefficient of

determination.
Source: own elaboration.
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architecture of [23, 38] are represented. The choice of 23 and
36 neurons in the two hidden layers appears optimal, as the best
performance metrics align with this configuration in sub-model 13.
No particular trend was observed in the performance metrics
across all the sub-models with different hyper-parameter combina-
tions. During training, the lowest error values, as indicated by
a lowest root mean square error (RMSE) value, are achieved by the
model using the tansig transfer function at the hidden layer, tansig
at the output layer, and Levenberg—-Marquardt training algorithm.
The RMSE value of 6.245 indicates better performance in
minimising errors. Further indication of the model’s low error
prediction is depicted in its mean absolute percentage error
(MAPE) and mean absolute error (MAE), values of 25.957 and
4.656, respectively, establishing its superior accuracy. Further to
this, the model delivers the highest variance accounted for (VAF)
and R values of 7.843 and 0.832, indicating a stronger correlation
between the actual and predicted values of the flooding parameter
(surface volume). The above result was in support of the findings
of Bergstra and Bengio (2012) from the random search for hyper-
parameter optimisation. The R-value reaches its peak at 0.832 for
sub-model 13, indicating the strongest linear relationship between
predictions and actual values. Other models with lower R-values
(<0.75) struggle to capture the relationships accurately, particularly
those with purelin. Sub-model 13 records the lowest MAE (4.656),
followed by other models employing trainlm. Networks with tansig
and logsig transfer functions exhibit moderate MAE values
compared to those with purelin. The above agrees with the result
of Netto et al. (2021), where they emphasised the importance of
selecting appropriate architecture, transfer functions, and algo-
rithms to achieve such results.

During testing, a trend similar to the training phase was
observed in the testing phase, but with a slightly less accurate
prediction owing to the slightly higher error values compared to
the training phase. The results indicate a marginal decline in
performance for the identical combination (tansig-tansig with
trainlm) during the training phase, with RMSE rising to 8.174,
MAPE to 49.758, and MAE to 6.986. The pipeline automati-
cally handles the preprocessing, training and evaluation while
providing a detailed performance breakdown for different data
segments. This gives concrete evidence of how well the model
performs in extreme values versus the normal range. As an
alternative to the high MAPE linked outliers and model over-
generalisation, data augmentation is used in conjunction with the
synthetic minority oversampling technique (SMOTE) regression,
which generates synthetic samples between extreme samples and
neighbours. However, the VAF and R-values of 44.407 and 0.7205
suggest acceptable generalisation. Other combinations exhibit
a mix of performance, but none outperform the tansig-tansig with
trainlm combination across testing metrics. Although the testing
MAPE (49.758) and MAE (6.986) exceed those in training, these
figures remain competitive, demonstrating the model’s capacity to
generalise learnt patterns to novel data. The R-values range from
0.6897 to 0.7205 at sub-models 1 and 13, respectively, reflecting
varying degrees of correlation between predictions and actual
values. Also, based on R-values, models with tansig at both hidden
and output layers showcase better performance, indicating stronger
predictive relationships. While trainlm contributes to achieving
better R-values, trainscg struggles to match this performance.
Models utilising trainlm training methods frequently get superior
VAF values, highlighting their capacity for generalisation. The

Table 4. Statistical metrics result of the artificial neural network at the training and testing phase

Transfer function Training performance metrics Testing performance metrics
Training
hli:yd:r“ °1‘;;1:r‘t algorithm | pyiop | MAPE | MAE | VAF | R | RMSE | MAPE | MAE | VAF | R
softmax logsig trainbr 7.153 31.649 5.023 12.543 0.763 9.758 49.657 8.112 47.116 0.6897
tansig purelin trainbr 6.905 25.162 4.263 9.812 0.696 9.054 50.076 7.856 47.913 0.7035
tansig tansig trainbr 7.624 32.688 5.689 10.325 0.734 9.382 51.346 7.168 48.521 0.7176
logsig logsig trainscg 8.167 30.904 5.262 8.919 0.689 8.811 49.045 8.635 46.705 0.7013
logsig logsig trainlm 8.455 28.053 6.128 11.012 0.745 9.848 53.023 7.812 45.914 0.6326
logsig tansig trainscg 7.725 27.554 5.605 8.362 0.823 9.632 49.756 8.065 45.513 0.6721
tansig purelin trainscg 6.854 29.562 4.521 9.065 0.804 8.906 50.325 7.164 44.906 0.6875
tansig purelin trainlm 7.611 30.736 5.824 7.993 0.758 9.908 52.316 7.357 47.345 0.7137
purelin softmax trainbr 7.279 33.689 6.438 8.124 0.816 9.975 51.045 8.996 46.052 0.7032
tansig logsig trainscg 6.457 35.175 5.066 9.445 0.768 9.561 50.987 7.289 45.844 0.7113
softmax tansig trainbr 7.418 27.997 5.257 10.843 0.805 9.935 50.765 8.065 46.147 0.6975
purelin logsig trainlm 7.783 28.183 5.209 7.904 0.762 8.875 51.564 7.623 47.182 0.7044
tansig tansig trainlm 6.245 25.957 4.656 7.843 0.832 8.174 49.758 6.986 44.407 0.7205
softmax softmax trainlm 7.521 27.883 4.978 9.543 0.811 9.355 49.765 7.858 47.746 0.7234
softmax tansig trainscg 6.972 27.533 5.107 12.205 0.751 9.643 50.726 8.345 44.986 0.6864
logsig tansig trainbr 7.8155 25.983 5.723 11.235 0.787 9.246 51.353 7.618 45.579 0.6742

Explanations: MAPE = mean absolute percentage error, MAE = mean absolute error, VAF = variance accounted for, RMSE, R as in Tab. 3.

Source: own study.
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MAE ranges from 6.986 to 8.635, signifying variations in absolute
predictive accuracy. Models trained with trainlm often get a lower
MAE than those trained with trainbr or trainscg.

The flood categorised boundary conditions in artificial neural
network-based flood prediction in the Vaal River Basin used
hydrological thresholds with the discharge rates 2.801 m’-s™" based
on return periods of 10-year floods. Temporal boundaries with
a lead time of 72 hours for operational flood prediction and data
input periods using historical data spanning 30 years were used for
training. Seasonal variations with wet season (October—March)
against dry season patterns were used. Spatial boundaries of the
upstream catchment limit with major tributaries and extend
downstream until the confluence with the Orange River. These
threshold values were calibrated using historical flood records and
validated against observed flood events in the Vaal River Basin to
categorise when the river basin is flooded and not flooded.

LINEARITY BETWEEN EXPERIMENT AND PREDICTED DATA

In addition to the evaluation of statistical metrics, performance
during the training and testing phases is illustrated by a scatter
plot comparing the predicted and actual values of the flooding
parameter (surface volume), as shown in Figure 4. The scatter
plot demonstrates that the artificial neural network (ANN)
model has learned the overall trends and patterns in the training
data with a strong R-value of 0.832. The model performs well in
capturing the central trend and variability of the training data, as
evidenced by the strong R-value and the alignment of many data
points along the fit line. The scatter plot suggests the ANN model
is moderately effective in predicting flooding occurrence based on
the meteorological variables. The data points show a positive
correlation with the experimental values, but are scattered around
the fit line. For lower experimental values (<20), the predictions
align closely with the actual values. As the experimental values
increase (>30), the scatter becomes more pronounced, and the
model shows some deviation from the ideal relationship. The data
points exhibit significant dispersion around the fit line, which
denotes the optimal relationship. This indicates that although the
ANN model forecasts trends, there exists variability and a certain
level of inaccuracy in specific predictions.

Beyond the statistical metrics evaluation, the testing phase
performance is demonstrated using a scatter plot of the predicted
and actual values of the flooding parameter (surface volume). The
scatter plot suggests the ANN model is moderately effective in
predicting flooding based on the weather variables. The R-value
of 0.720 measures the magnitude of the linear relationship and
exhibits a moderate positive correlation between the actual and
predicted surface volume values.

ANALYSIS OF RESIDUAL

In Figure 5a, the testing comparison plot of the actual and
predicted values of the flooding parameter (surface volume) is
represented. The predicted values are concentrated around the
central range of the experimental values (approximately 15-25).
The experimental values show a wide range from approximately
5 to over 50. The predicted values, however, are compressed into
a narrower band, indicating that the ANN model does not fully
capture the variability in the training data. For extreme
experimental values (e.g., >30 or <10), the model does not
adequately predict the corresponding values, suggesting that the
ANN might have overgeneralised during training. The predicted
values agree with the overall trend of the actual values, although
they display discrepancies at some points. This could be
attributed to overestimation and underestimation of some model
hyperparameters (Adeleke and Jen, 2022).

In Figure 5d, the testing comparison plot of the actual and
predicted values of flooding indices (surface volume) is repre-
sented. In Figure 5d, the actual surface volume values exhibit
a significant variability, reflecting the inherent complexity of the
dataset. The predicted values agree with the overall trend of the
actual values, although they display discrepancies at some points.
Moreover, substantial disparities between actual and predicted
flooding indices (surface volume) are evident in the outliers when
surface volume diverges substantially from the mean. For most of
the samples, the predictions are adequately consistent with the
actual values, indicating that the model effectively reflects the
underlying patterns of the dataset. In addition to the comparison of
actual and predicted flooding indices (surface volume), the
histogram has a relatively symmetric distribution centred at zero,
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Fig. 4. Scattered plot of actual and artificial neural network predicted flooding indicator (surface volume) at the: a) training, b) testing; source: own

study
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suggesting the model lacks substantial systematic bias (e.g.,
continuous overprediction or underprediction) (Figs. 5¢ and 5f).
Nevertheless, the residuals exhibit a little dispersion, signifying
variability in prediction errors. The MSE and RMSE in Figures 5b
and 5e provide a more interpretable metric in the same units as the
target variable. The histogram has a very symmetric distribution
centred around zero, indicating that the model does not include
significant systematic bias (e.g., persistent overprediction or
underprediction). Nonetheless, the residuals display some disper-
sion, indicating diversity in prediction mistakes. It presents the
MSE and RMSE, offering more comprehensible statistics in the
same units as the target variable. The close correlation between
actual and expected values in the mid-range indicates high
predictive accuracy for standard data points.

The histogram of the residual plot in Figure 6 gives insight
into the performance of the model during training. In Figure 6a,
the scattered plot of the actual and predicted flooding indicator is
shown. The residuals exhibit a symmetrical distribution centred
around 0, with the greatest concentration of residuals occurring
close to the zero residual line. This suggests that the ANN model
does not demonstrate substantial consistent bias in overestimat-
ing or underestimating values during the training phase. The

predominant residuals fall within the interval from —10 to 10,
with a pronounced peak at 0. This indicates that most of the
predictions are near the actual values, showcasing commendable
accuracy throughout training. The residuals range from around
—12 on the left to +22 on the right, exhibiting lower frequencies at
the extremes. These outliers signify instances where the ANN
failed to precisely forecast the flooding parameter (surface
volume). The maximum frequency is observed at residuals
around zero, with more than 500 samples exhibiting little
prediction errors. This verifies that the model effectively identifies
the overarching patterns of the training data.

To further understand the predictive behaviour of the ANN
at the testing phase, the histogram of residuals in Figure 6B is
critical. The histogram has considerable symmetry, suggesting
that the residual errors are uniformly distributed around zero.
This symmetry indicates that the model does not exhibit a bias
towards overprediction or underprediction. The distribution of
residuals indicates a certain level of variance in the errors,
suggesting opportunities for enhancing the model’s generalisation
capacity. The majority of residuals fall within a range from —10 to
+10, signifying that the model’s predictions are often near the
actual values. The peak of the histogram is near zero residuals,
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Fig. 6. Histogram of residuals at the phases: a) training, b) testing; source: own study
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suggesting that the ANN model is unbiased and does not
consistently overpredict or underpredict the flooding indices
(surface volume). Although the majority of residuals are
concentrated around zero, outliers are reaching —25 and +15.
These signify outliers where the model had difficulties in precisely
forecasting the flooding indices (surface volume).

Furthermore, the box plot in Figure 7 gives more insight
into the prediction trends of the ANN model at the testing phase
for flooding indices (surface volume) predictions. The red line in
each box denotes the median (50th percentile) value of the
dataset. The medians of both actual and projected values are
closely aligned, indicating that the ANN model well represents
the data’s central tendency. The blue boxes denote the
interquartile range (25th to 75th percentile).
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Fig. 7. Box plot of the actual and predicted flooding indicator (surface
volume) during the testing; source: own study

In modelling complex, non-linear scenarios such as flooding
occurrence involving multiple variables based on meteorological
parameters, the observed trends in the performance metrics align
with known theoretical and practical dynamics of the neural
network model. In this research, ANN maintains lower RMSE
and MAE, showcasing consistent performance across data
representations. The ANNs learn representations of the input
data through hidden layers, enabling them to identify and
emphasise relevant features. This is particularly useful when input
variables interact in non-trivial ways, as in meteorological data
(Li, J. et al., 2024). In addition, ANN consistently performs well in
both training and testing phases, despite changes in data
distribution. The ANNs can scale with large datasets, adapting
through iterative learning processes like backpropagation, which
minimises error across the entire dataset. This adaptability makes
them particularly suited for dynamic and complex datasets like
weather scenarios (Kocher and Kumar, 2021).

CONCLUSIONS

This study demonstrated the effectiveness of machine learning in
predicting floods in the Vaal River Basin. Its goal was to create
a computational intelligence model that would use artificial neural
networks to better anticipate floods, and it was successful in doing
so. In order to anticipate the likelihood of a flood, we looked at the
use of artificial neural networks, a non-linear auto-regressive

machine learning technique trained on patterns of previous rainfall
levels. A 30-year (1994-2024) dataset was collected from the South
African Weather Service and preprocessed using standard
techniques. Hyper-parameter optimisation of the models was
carried out using a grid-search method. The artificial neural
network (ANN) model was developed by testing different
topologies, training algorithms and activation functions at both
the hidden and output layers. The performance of the models was
evaluated using relevant statistical metrics, namely root mean
square error (RMSE), mean absolute percentage error (MAPE),
mean absolute error (MAE), value accounted for (VAE) and R-
value. The ANN model with tansig-tansig activation function and
Levenberg-Marquardt training algorithms outperformed other
architectures with RMSE of 6.245, MAPE of 25.95%, MAE of
4.656, VAE of 7.843 and R-value of 0.823 at the training. This
research demonstrated the viability of machine learning-based
flooding predictions based on weather variables, contributing to
flood risk management strategies.

Since RMSE imposes a greater penalty on substantial errors
compared to MAE, the proximity of RMSE and MAE suggests
that significant errors are comparatively few in both phases.
A high MAPE during testing indicates that the model has
difficulty making accurate predictions for certain severe or high-
variability instances in the testing set. The decline in R-value
signifies a reduction in the model’s predictive efficacy on testing
data, perhaps attributable to overfitting or inadequate representa-
tion of testing circumstances in the training dataset.

Overall, the study indicates that the model does not exhibit
a bias towards overprediction or underprediction. The majority of
residuals fall within a range from -10 to +10, signifying that the
model’s predictions are often near the actual values.

Future research should focus on:

- taking climate change scenarios into account;

- increasing the forecasts’ geographic resolution;

- creating comprehensible resources for local communities and
policymakers;

- establishing a performance baseline for comparison.
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