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Abstract 

A pontoon bridge, also known as a floating bridge, can be used as for pedestrian and vehicle traffic. The buoyancy of the 

floating bridge limits the maximum load it can carry. This research included experimental runs to study variations of open 

channel flow characteristics upstream and downstream a floating bridge. Eighty one runs have been carried out using a flume 

in a hydraulic laboratory. The experimental run program is classified into two main categories; the first investigates the 

velocity ratios (vds/vus) downstream and upstream the floating bridge. The second category is concerned with the energy head 

losses (hL) due to the presence of a floating bridge. The experimental runs are carried out using three pontoon lengths, three 

flow depths, six submerged depths, and three discharges. The results are analysed and graphically presented to help predict 

hydraulic parameters. The outcomes have shown that the floating bridge upstream, Froude number and submergence of the 

pontoon are the dominant parameters that affect the studied flow characteristics. 
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INTRODUCTION 

Floating bridges can be permanent or temporary and 

supported by pontoons. Most pontoon bridges are tempor-

ary, used in wartime and civil emergencies. Permanent 

floating bridges are useful for sheltered water-crossings 

where it is not considered economically feasible to suspend 

a bridge from anchored piers. Photo 1 shows an example for 

a floating bridge and its support a continuous deck for  

vehicle and pedestrian travel. Floating bridges are easy and 

quickly constructed within an economic cost. Social bene-

fits documented are substantial, as they improve the infra-

structure between cities and other areas.  

Such bridges require a section that is elevated, or can be 

raised or removed, to allow waterborne traffic to pass 

[FREDERIKSEN et al. 2019]. BREDE [2017] recognized that 

bridges are effective ways of connecting islands and penin-

sulas. VAN JOHNSON [2018] investigated floating bridges 

and stated that they may replace conventional bridges due 

to technical, practical, and economic reasons.  

 

Photo 1. Typical example of a floating bridge  

(photo: https://www.mabeybridge.com/products/bridging/mabey-

floating-bridge2) 

On the one hand, most studies of floating bridges exam-

ine them from a mechanical point of view. SHIXIAO et al. 

[2005] performed a hydro-elastic analysis of a nonlinearly 

connected floating bridge associated with moving loads and 

provided an equation for its dynamic response. ABOZAID et 

al. [2016] studied the structural performance of hybrid com-

posite floats in comparison with steel.  
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On the other hand, many researchers scrutinized float-

ing bridges from the hydraulic or hydrodynamic points of 

view. One of the most common topics in the hydraulic study 

of floating bridges are velocity distributions and energy 

head losses. They are considered to be essential parameters 

causing bed scouring which effectively changes the canal 

bed morphology [ARNESON et al. 2012]. The presence of 

a floating bridge affects the velocity distribution upstream, 

underneath, and downstream, and also the energy head loss, 

which are considered important parameters in the design 

process. The floating bridge sensitivity depends on its com-

ponents and the bridge may become more susceptible to spa-

tially altered excitations [MA et al. 2019]. Energy head loss 

occurs when the water body flows through the bridge 

[WANG et al. 2019].  

WEHAUSEN and LAITONE [1960] studied the open chan-

nel flow in presence of a floating bridge. Books on hydro-

dynamic should be consulted, as they provide an explana-

tion of the interaction of a fluid structure. Moreover, NEW-

MAN [1977] indicated the importance of studying hydro- 

dynamics, as it provided general information on hydro- 

dynamics, describe water waves as they interact with the  

installed structures, treated various problems of fluid move-

ment, described wave motion and dealt with various hydro-

dynamic problems. HELAL et al. [2018] carried out two hun-

dred and twenty nine experimental runs to study the bed 

morphology in an open channel due to presence of a floating 

bridge. They also investigated the energy head loss on 

a static floating bridge with constant and variable submerg-

ence ratios. They deduced empirical equations for scour pa-

rameters, predictions, and flow characteristics. The results 

indicated that Froude number and floating bridge submerg-

ence dominate regarding the impact on bed morphology and 

flow characteristics. ETTEMA et al. [2006] investigated the 

major floods in the Midwest in several consecutive decades.  

 

They determined that flash floods occur frequently on an 

annual basis and they affect small bridges in Iow.  

Some studies scrutinized floating bridges from the 

structural point of view. SEIF and INOUE [1998] analysed 

floating bridges subjected to wave loading by varying the 

contributing parameters. PETERSEN et al. [2019] studied the 

dynamic behaviour of long-span bridges under stochastic 

loads from typically ambient excitation sources. In real life, 

these loads cannot be measured directly at a full scale. DENG 

et al. [2018] reported that the wave attenuation is frequency- 

-dependent and effective for the common wave frequencies. 

KOU et al. [2019] applied numerical model based on the  

potential flow theory and finite element method (FEM) to 

predict the wave-induced hydro-elastic responses of flexible 

floating bridges. 

This research included experiments and investigations 

of floating bridges and their impact on waterways. This was 

done by studying downstream to upstream velocity ratios 

and the resulting energy head loss due to the presence of 

floating bridges. 

STUDY METHODS 

EXPERIMENTAL SETUP 

The flume used in the hydraulic laboratory is built on 

the ground and considered as a recirculating type. The 

model is a closed operating system with a 20 m overall 

length, 0.7 m wide and 0.5 m deep for allover the flume 

except 0.75 m deep for the study area of 4 m length. Water 

is supplied to the flume through the inlet pipe by means of 

five centrifugal pumps to supply three different discharges 

of 50, 70, and 110 dm3∙s–1. Figure 1 and Photos 2 and 3 

show the layout and photos for the flume. The model has 

a concrete bed and brick side walls, with brick dimensions 

 

Fig. 1. The flume layout: a) elevation, b) plan; source: own elaboration 
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Photo 2. Photographic shots during the experimental setup (photo A.D. Ghanim) 

                

Photo 3. The floating bridge model in the hydraulic laboratory (photo A.D. Ghanim) 

of 20×20×40 cm. They are placed and plastered by cement 

mortar. A sharp crested weir of 70×35×0.4 cm is placed 

across the flume at its beginning to ensure discharge meas-

urements by electromagnetic flowmeters. A steel caisson 

that covered 0.1L of the flume of 70×50×40 cm is filled with 

gravel in order to dissipate energy, regulate the flow over 

the weir, and to ensure that water has uniform flow in the 

flume. The floating bridge model is installed and accurately 

placed into the flume at its mid-section between 0.6L and 

0.8L with the center of the floating bridge model exactly  

located at 0.7L, as shown in Figure 3. The channel bed is 

covered by 0.25 m soil of d50 = 0.48 mm. A steel tilted gate 

is located at the end of the flume to control water depth.  

Velocity is measured at depths of 0.2, 0.6, and 0.8 by mini 

flowmeter of its outer diameter 7.0 mm with the accuracy of 

±2%. In addition, water levels are measured by a single 

point gauge. 

EXPERIMENTAL PROGRAM 

The experimental program has encompassed eighty one 

experimental runs summarized in Table 1. To simulate the 

different flow conditions in open channel, three discharges 

and three water depths are used. Regarding the floating 

bridge model, three lengths are investigated under different 

draft depths in order to determine the impact of the floating 

bridge on the downstream to upstream velocities ratios 

vds/vus, and the energy head loss. Figures 2 and 3 are pre-

sented to explore the flow pattern in the vicinity of the float-

ing bridge, and the locations of velocity measurements for 

each bridge length. The measurements cover 4 m length of 

the experimental model and are distributed in six locations 

along the channel center line. Two measuring points are  

located upstream of the bridge model and the rest are down-  

 
Table 1. Experimental runs program 

Discharge Q  

(dm3∙s–1) 

Water depth y  

(cm) 

Bridge length Lb  

(cm) 

Bridge draft d  

(cm) 

50 

12 50 7, 9, 10.5 

14 60 6, 8, 9 

16 70 4, 6, 7 

70 

12 50 7, 9, 10.5 

14 60 6, 8, 9 

16 70 4, 6, 7 

110 

12 50 7, 9, 10.5 

14 60 6, 8, 9 

16 70 4, 6, 7 

Source: own elaboration. 
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Fig. 2. Sketch for flow pattern at the location of floating bridge; vus = velocity upstream, vds = velocity downstream, Pd = pontoon bridge 

depth, d = bridge draft (submerged depth), Lb = pontoon bridge length, Ldis = downstream disturbed length; source: own elaboration 

 

Fig. 3. Locations of velocity measurements, plan view;  

source: own elaboration 

stream where the significant influence on the flow charac-

teristics is expected to occur due the installation of the float-

ing bridge. 

RESULTS AND DISCUSSION 

MODEL VALIDATION 

Firstly, the flume results validation has been done by 

comparing the current experimental results with that con-

cluded by previous studies displayed in the review section. 

The outcomes by HELAL et al. [2018], FREDERIKSEN et al. 

[2019], ABOZAID et al. [2016], and PETERSEN et al. [2019] 

are used for this purpose. The comparative results are  

presented in Figure 4. According to comparative investiga-

tions, it can be noted that the results are convergent with the 

present measurements, where around 80% of the data are 

within the ±21% error band and around 91% are within 

±34% error band. Therefore, the experimental data are ac-

ceptable comparing to the data collected from the review. 

 

Fig. 4. Comparison between present and previous studies;  

vds = velocity in the downstream, vup = velocity in the upstream; 

source: own elaborations  

With respect to the flow characteristics, numerous  

parameters are affected because of the presence of the float-

ing bridge. These include mainly the floating bridge down-

stream to upstream velocities ratio vds/vup and energy head 

loss hL. The parameters associated in this research are the 

floating bridge length Lb, pontoon bridge depth Pd, pontoon 

width Pw, bridge draft (submerged depth) d, flow discharge 

Q, mean flow velocity v, flow depth measured away from 

the floating bridge effect (2 m before the tail gate) y (Fig. 2 

and Tab. 1). 
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The open channel flow characteristics and other para-

meters can be gathered based on the flow characteristics (g, 

vus, vds, y, hL, μ, ρ) and the floating bridge geometry (Pw, d, 

Lb, Pd). The dimensionless groups according to Buckingham 

π-theorem are as follows: 

 f (g, vus, vds, y, hL, μ, ρ, Pw, d, Lb, Pd)  (1) 

where: Fr = the upstream Froude number calculated at the 

section, where y is measured (Fr =
V

√𝑔 𝑦
). The considered 

flow condition is turbulent, hence μ (dynamic viscosity of 

water) can be neglected. During the experimental runs, the 

gravitational acceleration g = 9.81 m∙s–2, pontoon width Pw 

= 70 cm, and the pontoon bridge depth Pd = 20 cm are con-

stant. After some arrangements for Equation (1), it can be 

deduced that: 

 𝑓 (
𝑑

𝑦
,

ℎ𝐿

𝑦
, Fr,

𝑃𝑑

y
,

𝑣ds

𝑣𝑢𝑠
 ) = 0 (2) 

 
𝑣𝑑𝑠

𝑣𝑢𝑠
= 𝑓 (

𝑑

𝑦
, Fr,

𝑃𝑑

𝑦
 ) (3) 

 
ℎ𝐿

𝑦
= 𝑓 (

𝑑

𝑦
, Fr,

𝑃𝑑

𝑦
 ) (4) 

The measurements of experimental runs are recorded, 

analysed and graphically presented in charts. The analysis is 

presented into two main categories: the velocity ratio vds/vup 

and the head loss hL as per Equations (3) and (4), respect-

ively. 

FLOATING BRIDGE DOWNSTREAM TO UPSTREAM 

VELOCITIES RATIO 

The first category of the experimental runs focuses on 

studying the variation of the floating bridge downstream to 

upstream velocities ratio, vds/vup. The parameters regarding 

the analysis process are the discharge Q of 50, 70, and 70 

dm3∙s–1 which measured with calibrated mini flowmeter; 

submergence ratio d/Lb of 0.14, 0.18, and 0.21 correspond-

ing to Lb = 50 cm. Also, the floating bridge downstream to 

upstream velocities ratio vds/vup and ratio results are ana-

lysed for different pontoon bridge Lb/Pd ratios of 2.5, 3.0, 

and 3.5.  

Figure 5 is plotted to characterize the influence of up-

stream Froude number on vds/vup for different values of d/Lb 

under various discharges. From the analysis of the out-

comes, it can be seen that all measurements of vds/vup in the 

presence of the floating bridge are greater than one. That 

implies the velocity downstream the floating bridge is 

greater than upstream. The figures additionally show that 

the floating bridge downstream to upstream velocity ratio 

vds/vup increases as the Froude number increases regardless 

the discharge. Emphasizing the impact of the submergence 

ratio d/Lb, the figures show that for constant upstream 

Froude number, the vds/vup increases as the submergence  

ratio, d/Lb increase. The reported findings are due to the  

contraction in the flow area created by the presence of the 

bridge model.  

Figure 6 shows the relation between vds/vup ratio and the 

upstream Froude number under different discharges. Based 

on the analysis, it is derived that for d/Lb of 0.18 and Q of 

 

 

 

Fig. 5. Floating bridge downstream to upstream velocity ratio for 

flow discharge: a) Q = 50 dm3∙s–1, b) Q = 70 dm3∙s–1, c) Q = 110 

dm3∙s–1, d = bridge draft, Lb = pontoon bridge length; source: own 

study 

 

Fig. 6. Floating bridge downstream to upstream velocity ratio 

vds/vup for d/Lb = 0.18; d, Lb as in Fig. 5; source: own study 
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50 dm3∙s–1 the increase in the Froude number from 0.328 to 

0.481 results in the increase of vds/vup from 1.078 to 1.139. 

In other words, 46.65% increase in the Froude number leads 

to 5.66% increase in vds/vup. Additionally, for the Froude 

number of 0.5 and d/Lb of 0.18, it has been found that the 

increase of the flow discharge Q by 40% results in the in-

crease of vds/vup by 1.8%. Finally, for Q of 70 dm3s–1 and 

Froude number of 0.5, the vds/vup increases by 8.4% as a re-

sult of 50% increase in the submergence ratio, d/Lb. 

Figure 7 presents the impact of the upstream Froude 

number on vds/vup for various values of d/Pd under Lb/Pd of 

2.5, 3.0, and 3.5, respectively. The figures show the same 

results as discussed for the impact of the Froude number and 

submergence ratio on vds/vup on the same pontoon bridge 

length ratio Lb/Pd. Additionally, for Froude number of 0.5 

and d/Pd of 0.4, the increase in the pontoon bridge  

 

 

 

 

Fig. 7. Floating bridge downstream to upstream velocity ratio 

vds/vup for: a) Lb/Pd = 2.5, b) Lb/Pd = 3.0, c) Lb/Pd = 3.5;  

Lb = pontoon bridge length, Pd = pontoon bridge depth;  

source: own study 

length ratio Lb/Pd from 2.5 to 3.5 prompts a decrease in 

vds/vup from 1.12 to 1.06. This implies a 40% increase in 

Lb/Pd which results in 5.07% decrease in vds/vup. It demon-

strates that the velocity loss due to the presence of the float-

ing bridge is proportional to the pontoon bridge length. 

Figure 8 has been introduced to explore the influence of 

d/y on vds/vup for different pontoon bridge length ratio, Lb/Pd 

of 2.5, 3.0, and 3.5. The figure shows that the increase in d/y 

values demonstrates a recognizable increase in values of 

vds/vup regardless the pontoon length ratio Lb/Pd. 

 

Fig. 8. Relationship between downstream and upstream velocity 

ratio vds/vus and bridge draft to flow depht d/y for different values 

of Lb/Pd; Lb, Pd as in Fig. 7; source: own study 

ENERGY HEAD LOSS IN PRESENCE OF FLOATING 

BRIDGE 

In this sub-section, the second group of the experi-

mental runs has been used to analyse parameters detailed in 

Equation (4) regarding the energy head loss due to the pres-

ence of the floating bridge. The energy head loss is calcu-

lated as follow: 

 ℎ𝐿 = 𝐸us − 𝐸ds = (𝑦us +
𝑣us

2

2𝑔
 ) − (𝑦ds +

𝑣ds
2

2𝑔
)  (5) 

where: Eus = upstream energy, Eds = downstream energy. 

To examine the impact of Froude number on the energy 

head loss under different conditions of floating bridge em-

phasizing on d/Pd, and Lb/Pd ratios Figure 9 is introduced. 

For any flow condition and characteristics of the bridge 

model, the figures show that the increase in the upstream 

Froude number Fr results in an increase in energy head loss 

hL/y. Thus, the increase in Fr values leads to progressive in-

crease in the flow velocity and consequently the increase in 

the head loss ratio hL/Pd for constant Pd. Additionally, the 

increase in the submergence ratio d/Pd leads to an increase 

in values of hL/y. Once the submergence ratio increases, the 

contracted area increases as well, which creates higher  

velocities, and increases the head loss.  

According to Figure 10, it is deduced that the increase 

in d/y results in the increase in hL/y. Moreover, the increase 

in d/y values results in an increase in the contracted area, 

which prompts higher velocity and increases the head loss 

ratio hL/y. The figure also shows that the pontoon length has 

a significant influence on the energy head loss. The increase 
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Fig. 9. Relationship between energy head loss hL/y and Fr for  

different values of d/Pd, and ratio: a) Lb/Pd = 2.5, b) Lb/Pd = 3.0, 

c) Lb/Pd = 3.5; hL = energy head loss, d = bridge draft, Lb, Pd  

as in Fig. 7; source: own study 

 

Fig. 10. Relationship between hL/y and d/y for different values  

of Lb/Pd; hL = energy head loss, y = flow depth, d = bridge draft, 

Lb, Pd as in Fig. 7; source: own study 

in the pontoon bridge length ratio Lb/Pd produces the in-

crease in the energy head loss ratio hL/y. 

CONCLUSIONS 

On the basis of the analysis of the obtained results of 

this experimental research, the following is concluded: 

1. The use of a floating bridge affects the velocity dis-

tribution upstream, below, and downstream. 

2. The floating bridge downstream to upstream velocity 

ratio vds/vup increases with the increase of flow discharge 

which results in the increase in the Froude number and the 

increase in submergence ratios d/Pd. 

3. The floating bridge downstream to upstream velocity 

ratio vds/vup decreases with the increase of the pontoon 

bridge length Lb/Pd. 

4. The increase in the flow discharge and hence Froude 

number results in the increase in energy head loss hL/y. 

5. Energy head loss hL/y increases as the submergence 

ratio d/Pd increases. 

6. As the pontoon bridge length ratio Lb/Pd increases, 

the energy head loss hL/y decreases. 

7. For future works, it is recommended that wide ranges 

of variables should be investigated together with numerical 

simulations to verify their results that can be collated with 

experimental and field data. 

 
Notations 

B = flume width (cm) 

d = bridge draft (submerged depth) (cm) 

Eup = upstream energy (m) 

Eds = downstream energy (m) 

Fr = upstream Froude number (–) 

g = gravitational acceleration (m∙s–2) 

hL = energy head loss (m) 

L = flume length (m) 

Lb = floating bridge length (cm) 

Pd = pontoon bridge depth (cm) 

Pw = pontoon bridge width (cm) 

Q = flow discharge (dm3∙s–1) 

v = mean flow velocity (m∙s–1) 

vup = upstream flow velocity (m∙s–1) 

vds = downstream flow velocity (m∙s–1) 

y = flow depth (cm) 

yup = upstream flow depth (cm) 

yds = downstream flow depth (cm) 

𝜌 = water density of the flow (kg∙m–3) 

μ = dynamic viscosity of water (kg∙m–1∙s–1) 
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