SUPPLEMENTARY MATERIAL

Effect of foliar spray with some insecticides and nutrients in controlling the striped mealybug and the yield and quality of produced mangoes

Moustafa M.S. Bakry^{*1)} \boxtimes \bigcirc , Eman F.M. Tolba²⁾ \boxtimes \bigcirc , Amr M.M. Badawy³⁾ \boxtimes \bigcirc , Mahmoud Y.H. Henaish⁴⁾ \boxtimes \bigcirc , El-Nouby H. Salem⁵⁾ \boxtimes \bigcirc , Lamiaa H.Y. Mohamed¹⁾ \boxtimes \bigcirc

¹⁾ Department of Scale Insects and Mealybugs Research, Plant Protection Research Institute, Agricultural Research Center, 12619 Giza, Egypt

²⁾ Plant Protection Department, Faculty of Agric, New Valley University, New valley, Egypt

³⁾ Zoology Department, Faculty of Science, South Valley University, Egypt

⁴⁾ Department of Taxonomical Research, Plant Protection Research Institute, Agricultural Research Center, 12619 Giza, Egypt

⁵⁾ Horticulture Department, Faculty of Agriculture & Natural Resources, Aswan University, Aswan, 81528, Egypt

^{*} Corresponding author

Table S1. Reduction of nymphs *Ferrisia virgata* of the tested insecticides on 'Zebda' mango leaves in the field circumstances in 2021/2022 season

			Reduc	tion aft	er first s	pray in	October	2021					Redu	ction a	fter seco	nd spra	y in May	2022		
Treatment	7 th D	OAS	14 th I	DAS	21 st I	OAS	28 th I	OAS	residual	effect	7 th D	AS	14 th I	OAS	21 st [OAS	28 th I	OAS	residua	l effect
	%	SE	%	SE	%	SE	%	SE	%	SE	%	SE	%	SE	%	SE	%	SE	%	SE
Profenofos	61.48 ⁱ	±4.32	76.68 ^{fg}	±2.15	84.87 ^{cd}	±1.21	91.03 ^{ab}	±1.24	78.52 ^{AB}	±1.37	64.54 ^g	±3.41	78.41 ^e	±2.24	86.10 ^{bcd}	±0.64	91.81 ^a	±0.65	80.21 ^{AB}	±0.87
Malatox	56.52 ^j	±1.63	75.77 ^g	±1.09	83.61 ^{de}	±0.92	90.68 ^{ab}	±0.99	76.64 ^B	±0.12	58.98 ^h	±5.97	77.52 ^e	±1.40	84.67 ^{bcd}	±1.72	91.47 ^a	±0.14	78.16 ^B	±2.20
Imidacloprid	67.10 ^h	±1.07	83.20 ^{de}	±1.91	90.33 ^{ab}	±1.19	92.65 ^a	±1.90	83.32 ^A	±0.70	69.51 ^f	±3.66	84.12 ^{cd}	±3.56	91.21 a	±0.82	93.35 ^a	±1.45	84.54 ^A	±1.96
Mospilan	66.31 ^h	±2.94	80.40 ^{ef}	±1.83	88.53 ^{bc}	±1.97	92.02 ^{ab}	±1.45	81.82 ^{AB}	±1.77	68.77 ^{fg}	±4.13	81.29 ^{de}	±3.72	88.92 ^{abc}	±2.81	92.43a	±1.86	82.85 ^{AB}	±3.08
Actara	64.15 ^{hi}	±4.95	77.62 ^{fg}	±0.67	88.64 ^{bc}	±1.64	91.47 ^{ab}	±0.29	80.47 ^{AB}	±0.63	67.25 ^{fg}	±2.30	79.22 ^e	±2.74	89.14 ^{ab}	±2.84	92.04 ^a	±1.19	81.91 ^{AB}	±2.19
Reduction (%) per day	63.11 ^C	±1.25	78.73 ^B	±0.80	87.20 ^A	±0.73	91.57 ^A	±0.44	80.15	±0.64	65.81 ^C	±1.10	80.11 ^B	±0.75	88.01 ^A	±0.59	92.22 ^A	±0.29	81.54	±0.60

Explanations: SE = standard error, DAS = day after spraying; values indicated by different letters (capital letters for tested treatments or inspection dates and small letters for the interaction between tested treatments and different inspection dates after spraying) for nymphs individuals are statistically significant differences at $p \le 0.05$ (Tukey's HSD test). Source: own study.

Table S2. Reduction of nymphs Ferrisia virgata of the tested insecticides on 'Zebda' mango leaves in the field circumstances in 2022/2023 season

			Reduct	ion afte	er first sp	oray in	October	2022					Redu	ction a	fter seco	nd spra	y in May	2023		
Treatment	7 th D	AS	14 th Γ	OAS	21 st E	DAS	28 th [OAS	residual	effect	7 th D	AS	14 th I	OAS	21st I	DAS	28 th I	OAS	residua	l effect
	%	SE	%	SE	%	SE	%	SE	%	SE	%	SE	%	SE	%	SE	%	SE	%	SE
Profenofos	65.73k	±3.13	78.87 ^h	±3.26	86.45 ^{cd}	±1.35	91.84 ^{ab}	±1.63	80.72 ^{BC}	±1.88	67.38 ⁱ	±2.48	79.94 ^f	±2.66	87.13°	± 0.95	92.28 ^{ab}	±1.34	81.68 ^{BC}	±1.28
Malatox	60.38 ^l	±1.50	77.79 ^h	±2.01	85.09 ^{def}	±0.55	91.42 ^{ab}	±1.27	78.67 ^C	±1.04	62.12j	±1.60	78.86 ^f	±1.37	85.76 ^{cd}	±0.43	91.86 ^{ab}	±0.99	79.65 ^C	±0.53
Imidacloprid	72.31 ⁱ	±0.36	85.74 ^{de}	±1.98	91.80 ^{ab}	±1.21	93.71 ^a	±1.77	85.89 ^A	±1.05	73.50 ^g	±0.39	86.39 ^{cd}	±1.73	92.11 ^{ab}	±1.33	93.92 ^a	±1.83	86.48 ^A	±1.13
Mospilan	69.98 ^{ij}	±33.02	82.71 ^{efg}	±0.60	89.98 ^b	±1.14	93.00 ^{ab}	±0.93	83.92 ^{AB}	±1.00	71.13 ^{gh}	±3.27	83.40 ^{de}	±0.93	90.36 ^b	±1.28	93.25 ^{ab}	±1.06	84.53 ^{AB}	±1.31
Actara	67.78 ^{jk}	±1.96	79.85 ^{gh}	±0.54	89.76 ^{bc}	±1.46	92.30 ^{fg}	±0.44	82.42 ^{ABC}	±0.37	69.06 ^{hi}	±2.60	80.71 ^{ef}	±0.47	90.26 ^b	±1.16	92.64 ^{ab}	±0.33	83.17 ^{ABC}	±0.51
Reduction (%) per day	67.24 ^C	±1.17	80.99 ^B	±0.90	88.62 ^A	±0.67	92.45 ^A	±0.45	82.32	±0.68	68.64 ^C	± 0.80	81.86 ^B	±0.57	89.12 ^A	±0.44	92.79 ^A	±0.30	83.10	±0.44

Explanations as in Tab. S1.

Table S3. Reduction of females *Ferrisia virgata* of the tested insecticides on 'Zebda' mango leaves in the field circumstances in 2021/2022 season

			Reduc	tion aft	er first sp	ray in	October 2	2021					Reduc	tion af	ter secon	d spray	in May 2	2022		
Treatment	7 th D	AS	14 th I	OAS	21 st D	AS	28 th D	AS	residua	l effect	7 th D	AS	14 th D	AS	21 st D	AS	28 th D	OAS	residua	ıl effect
	%	SE	%	SE	%	SE	%	SE	%	SE	%	SE	%	SE	%	SE	%	SE	%	SE
Profenofos	49.70 ^{ij}	±0.88	63.59 ^{efgh}	±7.26	60.44 ^{gh}	±6.10	73.13 ^{bcde}	±3.59	61.72 ^B	±2.93	52.50 ⁱ	±2.50	65.60 ^{efg}	±4.10	62.82 ^{gh}	±5.60	74.86 ^{bcde}	±2.54	63.94 ^B	±2.75
Malatox	48.37 ^j	±6.81	62.46 ^{fgh}	±4.80	59.86 ^{ghi}	±6.48	71.88 ^{cdef}	±3.20	60.64 ^B	±3.00	51.65 ⁱ	±5.03	64.61 ^{fgh}	±4.66	62.57 ^{gh}	±4.85	73.26 ^{cdef}	±3.97	63.02 ^B	±2.01
Imidacloprid	63.82 ^{efgh}	±6.15	67.18 ^{defg}	±4.68	77.57 ^{abc}	±4.31	85.59 ^a	±4.17	73.54 ^A	±3.67	65.58 ^{efgh}	±6.92	68.78 ^{defg}	±5.50	78.81 ^{abc}	±4.33	86.64 ^a	±3.30	74.95 ^A	±4.00
Mospilan	63.33 ^{efgh}	±5.44	66.79 ^{defg}	±3.47	72.20 ^{bcdef}	±2.33	82.13 ^{ab}	±3.31	71.11 ^{AB}	±2.33	65.29 ^{efgh}	±5.36	68.82 ^{cdefg}	±2.19	73.63 ^{bcdef}	±2.75	83.29 ^{ab}	±2.82	72.76 ^{AB}	±2.01
Actara	54.77 ^{hij}	±6.99	64.48 ^{efgh}	±3.35	65.54 ^{efg}	±4.68	76.75 ^{abcd}	±1.50	65.39 ^{AB}	±2.55	55.60 ^{hi}	±6.90	65.04 ^{efgh}	±3.70	66.10 ^{efg}	±4.86	77.12 ^{abcd}	±1.79	65.96 ^{AB}	±2.80
Reduction (%) per day	56.00 ^B	±2.35	64.90 ^{AB}	±1.62	67.12 ^{AB}	±2.22	77.89 ^A	±1.58	66.48	±1.48	58.12 ^B	±1.60	66.57 ^{AB}	±1.15	68.78 ^{AB}	±1.46	79.03 ^A	±1.06	68.13	±1.00

Explanations as in Tab. S1.

Source: own study.

Table S4. Reduction of females Ferrisia virgata of the tested insecticides on 'Zebda' mango leaves in the field circumstances in 2022/2023 season

			Reduct	ion afte	r first sp	ray in (October	2022					Reduc	tion aft	er second	spray ii	n May 20	23		
Treatment	7 th I	DAS	14 th I	DAS	21 st I	DAS	28 th I	DAS	residual	effect	7 th D	DAS	14 th D	AS	21 st D	AS	28 th I	OAS	resid effe	
	%	SE	%	SE	%	SE	%	SE	%	SE	%	SE	%	SE	%	SE	%	SE	%	SE
Profenofos	54.60 ^{ij}	±1.93	67.70 ^{efgh}	±4.83	64.55 ^{gh}	±4.55	75.35 ^{bcde}	±4.74	65.55 ^B	±2.20	55.85 ^{ij}	±4.72	69.35 ^{efgh}	±2.51	66.01 ^{fgh}	±3.90	75.66 ^{bcde}	±6.05	66.72 ^B	±3.04
Malatox	52.25 ^j	±8.76	65.42 ^{fgh}	±5.61	63.00 ^{ghi}	±7.36	74.53 ^{cdef}	±2.29	63.80 ^B	±4.60	52.86 ^j	±11.34	65.83 ^{fgh}	±7.41	63.89 ^{ghi}	±8.73	75.33 ^{bcdef}	±2.91	64.48 ^B	±6.61
Imidacloprid	68.69 ^{efgh}	±5.94	71.44 ^{defg}	±4.99	81.01 ^{abc}	±3.22	88.17 ^a	±2.19	77.33 ^A	±3.09	69.71 ^{efgh}	±6.29	72.51 ^{cdefg}	±5.04	81.40 ^{abc}	±3.83	88.34 ^a	±2.81	77.99 ^A	±3.59
Mospilan	68.48 ^{efgh}	±2.12	70.47 ^{defg}	±5.17	75.88 ^{bcde}	±2.44	84.31 ^{ab}	±3.25	74.78 ^{AB}	±1.93	69.76 ^{efgh}	± 1.04	70.94 ^{defgh}	±6.72	76.67 ^{bcde}	±1.67	84.72 ^{ab}	±3.74	75.52 ^{AB}	±3.01
Actara	60.36 ^{hij}	±5.70	68.61 ^{efgh}	±3.61	70.00^{efg}	±2.55	79.63 ^{abcd}	±2.10	69.65 ^{AB}	±1.51	62.02 ^{hij}	±4.96	69.79 ^{efgh}	±3.64	71.01^{defgh}	±3.19	80.35 ^{abcd}	±1.00	70.79 ^{AB}	±1.44
Reduction (%) per day	60.88 ^B	±2.34	68.73 ^{AB}	±1.63	70.89 ^{AB}	±2.06	80.39 ^A	±1.51	70.22	± 1.49	62.04 ^B	±1.85	69.68 ^{AB}	±1.27	71.80 ^{AB}	±1.52	80.88 ^A	±1.16	71.10	±1.20

Explanations as in Tab. S1.

Table S5. Effect of spraying some chemical insecticides against the *Ferrisia virgata*, either with or without the addition of foliar nutrients, on the 'Zebda' mango fruit physical characteristics during 2021/2022 and 2022/2023 seasons

_		Fruit	length		I	Fruit wi	dth (cm	.)	F	ruit sha	pe inde	ex	Fr	uit thick	iness (c	m)	J	Fruit siz	ze (cm³)]	Fruit n	nass (g)	
Treat- ment	2021	/2022	2022	/2023	2021	/2022	2022/	/2023	2021	/2022	2022	/2023	2021	/2022	2022/	/2023	2021/	2022	2022/2	2023	2021/2	2022	2022/	2023
I III III	cm	SE	cm	SE	cm	SE	cm	SE	cm	SE	cm	SE	cm	SE	cm	SE	cm	SE	cm	SE	cm	SE	cm	SE
T_1	11.9 ^h	±0.14	12.27 ^h	±0.14	8.14 ^h	±0.08	8.14 ^h	±0.02	1.47 ^{de}	±0.01	1.51 ^{ef}	±0.01	7.70 ^h	±0.09	7.81 ^h	±0.09	304.97 ^h	± 6.66	313.56 ^h	±4.06	234.70 ^h	±1.27	237.98 ^h	±1.29
T_2	12.09 ^g	±0.12	12.43 ^g	±0.12	8.29 ^g	±0.06	8.31 ^g	±0.03	1.46 ^{de}	±0.01	1.50 ^f	±0.01	7.87 ^g	±0.07	7.98 ^g	± 0.07	314.81 ^g	±5.22	324.46 ^g	±2.60	239.11 ^g	±0.73	242.46 ^g	± 0.74
T ₃	11.31 ^j	±0.10	11.63 ^j	±0.10	7.78 ^j	±0.10	7.78 ^j	±0.05	1.46 ^e	±0.01	1.50 ^a	±0.01	7.31 ^j	±0.11	7.42 ^j	±0.11	276.31 ^j	±6.03	284.09 ^j	±3.72	225.18 ^j	±2.69	228.33 ^j	±2.72
T_4	11.62 ⁱ	±0.12	11.94 ⁱ	±0.12	7.96 ⁱ	± 0.08	7.98 ⁱ	±0.03	1.46 ^{de}	±0.01	1.50 ^{ef}	±0.01	7.52i	±0.09	7.62 ⁱ	±0.09	290.50 ⁱ	±5.93	299.38i	±3.41	230.72 ⁱ	±1.92	233.95 ⁱ	± 1.74
T ₅	13.84 ^b	±0.13	14.23 ^b	±0.13	9.10 ^b	±0.06	9.12 ^b	±0.06	1.52 ^b	±0.01	1.56 ^c	±0.01	8.75 ^b	±0.07	8.87 ^b	± 0.07	395.77 ^b	±6.52	407.47 ^b	±4.81	262.64 ^b	±2.14	266.32 ^b	±2.17
T ₆	14.47 ^a	±0.11	14.75 ^a	±0.15	9.33 ^a	±0.05	9.35 ^a	±0.08	1.55 ^a	±0.01	1.58 ^b	±0.01	8.99a	±0.06	9.04 ^a	±0.05	423.82 ^a	±5.78	433.17 ^a	±2.56	268.91 ^a	±1.51	271.00 ^a	±2.43
T ₇	13.08 ^d	±0.11	13.44 ^d	±0.12	8.79 ^d	±0.11	8.81 ^d	±0.09	1.49 ^c	±0.01	1.53 ^d	±0.01	8.41d	±0.12	8.53 ^d	±0.12	360.98 ^d	±7.49	372.07 ^d	±6.04	252.41 ^d	±2.89	255.94 ^d	±2.93
T ₈	13.39 ^c	±0.12	13.77 ^c	±0.13	8.94c	±0.07	8.96 ^c	±0.06	1.50°	±0.02	1.54 ^d	±0.02	8.57c	±0.08	8.69 ^c	±0.08	375.85°	±6.22	387.42 ^c	±4.68	257.24 ^c	±2.37	260.84 ^c	±2.40
T ₉	12.49 ^f	±0.12	12.84 ^f	±0.10	8.54 ^f	±0.09	8.55 ^f	±0.05	1.46 ^{de}	±0.02	1.50 ^{ef}	±0.02	8.14 ^f	±0.09	8.25 ^f	±0.09	335.03 ^f	±6.63	344.90 ^f	±4.12	245.15 ^f	±1.50	248.59 ^f	±1.53
T ₁₀	12.71 ^e	±0.13	13.07 ^e	±0.14	8.62 ^e	±0.09	8.65 ^e	±0.08	1.47 ^d	±0.01	1.51 ^e	±0.01	8.23 ^e	±0.08	8.34 ^e	±0.09	344.31 ^e	±7.03	354.89 ^e	±5.67	247.98 ^e	± 2.21	251.45 ^e	±2.24
T ₁₁	10.39 ^k	±0.07	10.61 ^k	±0.07	7.48 ^k	±0.05	7.54 ^k	±0.04	1.39 ^f	±0.01	1.41 ^g	±0.01	6.99 ^k	±0.07	7.08 ^k	±0.06	244.05 ^k	±3.34	251.02 ^k	±2.59	215.96 ^k	±1.79	219.27 ^k	±2.08

Explanations: T_1 = trees were treated with Profenofos insecticide only, T_2 = trees were treated with Profenofos insecticide in addition to a mixture of boron at 2.5 cm³·dm⁻³ + magnesium at 2.5 cm³·dm⁻³ + mag

Table S6. Effect of spraying some chemical insecticides against the *Ferrisia virgata*, either with or without the addition of foliar nutrients, on the chemical characteristics of fruits and the productivity of 'Zebda' mango trees during 2021/2022 and 2022/2023 seasons

	7	Yield per	tree (kg))		TSS	(%)			Acidi	ty (%)		7	TSS to ac	idity ratio	0		Total su	gars (%)	
Treat- ment	2021/	2022	2022/	2023	2021/	2022	2022	2023	2021	/2022	2022/	/2023	2021	/2022	2022/	/2023	2021	/2022	2022	/2023
mene	kg	SE	kg	SE	%	SE	%	SE	%	SE	%	SE	_	SE	-	SE	%	SE	%	SE
T_1	83.73 ^h	± 0.97	86.07 ^h	± 1.00	20.25 ^h	±0.28	20.58 ^h	±0.28	0.21 ^{bcd}	±0.01	0.22 ^{bcd}	±0.01	94.27 ^h	±2.37	94.87 ^h	±3.82	11.48 ^f	±0.17	11.74 ^h	±0.17
T_2	86.40 ^g	± 0.73	88.82 ^g	±0.76	20.89 ^g	±0.24	21.22 ^g	± 0.25	0.21 ^{bcd}	±0.01	0.21 ^{bcde}	±0.01	99.42 ^g	±1.47	102.79 ^g	±2.46	11.38 ^f	±0.17	12.21 ^g	± 0.13
T_3	80.30 ^j	±1.21	82.55j	±1.25	18.60 ^j	±0.31	18.89 ^j	± 0.32	0.24 ^b	±0.01	0.24b	±0.01	78.13j	±2.71	78.60 ^j	±1.68	10.74 ^h	±0.19	11.13 ^j	±0.21
T_4	82.53 ⁱ	± 0.96	84.84 ⁱ	±0.99	19.46 ⁱ	±0.29	19.77 ⁱ	±0.30	0.22 ^{bc}	±0.01	0.23 ^{bc}	±0.01	88.22 ⁱ	±1.28	85.46 ⁱ	±2.26	10.94 ^g	±0.21	11.52 ⁱ	±0.17
T_5	96.04 ^b	± 0.77	98.72 ^b	±0.79	25.33 ^b	±0.35	25.73 ^b	±0.36	0.15 ^{ef}	±0.01	0.15 ^{fg}	±0.01	171.28 ^b	±4.38	172.09 ^b	±7.20	13.33 ^b	±0.15	13.90 ^b	± 0.14
T_6	98.68 ^a	± 0.64	101.27	± 0.72	27.04 ^a	± 0.33	27.31 ^a	±0.21	0.14 ^f	±0.01	0.14 ^g	±0.01	193.49 ^a	±4.58	199.36 ^a	± 3.74	13.67 ^a	±0.13	14.37 ^a	±0.11
T_7	92.33 ^d	±1.27	94.92 ^a	±1.30	23.39d	±0.34	23.76 ^d	±0.38	0.17 ^{def}	±0.01	0.17 ^{efg}	±0.01	137.51 ^d	±3.81	142.57 ^d	± 3.95	12.68 ^d	±0.18	13.25 ^d	±0.22
T_8	94.08 ^c	±0.85	96.71°	± 0.87	24.19 ^c	± 0.35	24.58 ^c	±0.34	0.16 ^{ef}	± 0.01	0.15 ^{fg}	±0.01	154.75°	±3.97	160.43°	± 4.11	13.03°	±0.22	13.56 ^c	±0.15
T ₉	88.50 ^f	±0.99	90.97 f	±1.01	22.12 ^f	± 0.32	22.48 ^f	±0.36	0.19 ^{bcde}	±0.01	0.19 ^{cdef}	±0.01	115.08 ^f	±3.17	119.31 ^f	±3.29	12.15 ^e	±0.13	12.57 ^f	±0.17
T ₁₀	90.35 ^e	±1.02	92.88 ^e	±1.05	22.55 ^e	±0.35	22.91 ^e	±0.35	0.19 ^{cdef}	±0.01	0.18 ^{defg}	±0.01	121.66 ^e	±3.29	126.12 ^e	±3.41	12.20 ^e	±0.17	12.90 ^e	±0.18
T ₁₁	76.79 ^k	±0.64	78.64 ^k	±0.56	16.74 ^k	±0.16	16.96 ^k	±0.24	0.42 ^a	±0.01	0.40 ^a	±0.01	40.07 ^k	±0.83	41.93 ^k	±0.12	10.21 ⁱ	±0.09	10.51 ^k	±0.11

Explanations as in Tab. S5.

Table S7. The increase in the 'Zebda' mango fruit physical characteristics over the control treatment as a result of spraying some chemical insecticides against the *Ferrisia virgata*, either with or without the addition of foliar nutrients

T44	Fruit len	gth (cm)	Fruit wi	dth (cm)	Fruit sha	pe index	Fruit thick	kness (cm)	Fruit si	ze (cm³)	Fruit n	nass (g)
Treatment	2021/2022	2022/2023	2021/2022	2022/2023	2021/2022	2022/2023	2021/2022	2022/2023	2021/2022	2022/2023	2021/2022	2022/2023
T_1	14.85	15.65	8.79	8.01	5.57	7.07	10.27	10.33	24.96	24.92	8.68	8.53
T_2	16.37	17.18	10.85	10.32	4.98	6.23	12.65	12.71	28.99	29.26	10.72	10.58
T ₃	8.89	9.65	3.97	3.22	4.74	6.23	4.69	4.76	13.22	13.18	4.27	4.13
T_4	11.78	12.56	6.47	5.96	4.99	6.24	7.59	7.66	19.03	19.27	6.83	6.69
T ₅	33.23	34.16	21.71	21.00	9.46	10.89	25.20	25.28	62.17	62.32	21.62	21.46
T_6	39.27	39.06	24.69	24.11	11.69	12.08	28.65	27.65	73.66	72.56	24.52	23.59
T_7	25.83	26.71	17.53	16.97	7.07	8.33	20.37	20.45	47.91	48.22	16.88	16.72
T ₈	28.86	29.76	19.51	18.94	7.83	9.11	22.65	22.73	54.01	54.34	19.11	18.96
T ₉	20.23	21.07	14.17	13.49	5.31	6.68	16.49	16.56	37.28	37.40	13.52	13.37
T_{10}	22.34	23.19	15.30	14.76	6.10	7.36	17.80	17.87	41.08	41.38	14.83	14.68
Variance	94.27	91.21	45.77	46.08	5.24	4.30	61.12	58.45	377.29	370.26	43.23	41.41
Standard deviation	9.71	9.55	6.77	6.79	2.29	2.07	7.82	7.65	19.42	19.24	6.57	6.44
Standard error	2.59	2.55	1.81	1.81	0.61	0.55	2.09	2.04	5.19	5.14	1.76	1.72

Explanations: TSS = total soluble solids, T_1 –T10 as in Tab. S5.

Table S8. The increase in the resulting yield and quality of 'Zebda' mango trees over the control treatment as a result of spraying some chemical insecticides against the *Ferrisia virgata*, either with or without the addition of foliar nutrients

T44	Yield per	tree (kg)	TSS	(%)	Acidit	ty (%)	TSS to ac	idity ratio	Total su	gars (%)
Treatment	2021/2022	2022/2023	2021/2022	2022/2023	2021/2022	2022/2023	2021/2022	2022/2023	2021/2022	2022/2023
T_1	9.04	20.99	20.99	21.30	-48.56	-46.32	135.25	126.26	12.46	11.61
T_2	12.52	24.78	24.78	25.10	-49.72	-48.98	148.12	145.14	11.45	16.09
T_3	4.58	11.10	11.10	11.38	-42.97	-40.59	94.97	87.44	5.27	5.88
T_4	7.47	16.28	16.28	16.57	-47.17	-42.82	120.16	103.82	7.16	9.60
T ₅	25.06	51.31	51.31	51.69	-64.60	-62.97	327.43	310.41	30.58	32.22
T_6	28.50	61.56	61.56	60.98	-66.54	-66.15	382.87	375.43	33.91	36.64
T_7	20.24	39.74	39.74	40.09	-59.27	-58.80	243.18	239.99	24.25	26.02
T_8	22.52	44.53	44.53	44.89	-62.57	-62.14	286.19	282.60	27.61	28.94
T ₉	15.25	32.17	32.17	32.51	-53.97	-53.44	187.19	184.52	19.05	19.60
T_{10}	17.67	34.73	34.73	35.07	-55.61	-55.10	203.60	200.78	19.56	22.71
Variance	62.81	62.72	255.37	250.66	64.16	78.60	9086.29	9075.32	98.52	103.77
Standard deviation	7.93	7.92	15.98	15.83	8.01	8.87	95.32	95.26	9.93	10.19
Standard error	2.12	2.12	4.27	4.23	2.14	2.37	25.48	25.46	2.65	2.72

Explanations: TSS = total soluble solids, T_1-T_{10} as in Tab. S5.

Table S9. The avoidable loss in the 'Zebda' mango fruit physical characteristics in the sprayed treatments compared to the control treatment as a result of spraying some chemical insecticides against the *Ferrisia virgata*, either with or without the addition of foliar nutrients

Tuestment	Fruit len	gth (cm)	Fruit wi	dth (cm)	Fruit sha	pe index	Fruit thicl	kness (cm)	Fruit si	ze (cm³)	Fruit w	eight (g)
Treatment	2021/2022	2022/2023	2021/2022	2022/2023	2021/2022	2022/2023	2021/2022	2022/2023	2021/2022	2022/2023	2021/2022	2022/2023
T_1	17.54	16.83	12.76	12.97	5.48	4.47	14.29	13.57	28.04	27.61	12.72	12.19
T_2	16.45	15.74	11.10	11.12	6.01	5.22	12.44	11.70	25.72	25.10	11.08	10.53
T_3	21.82	21.15	16.62	16.84	6.22	5.22	18.62	17.94	34.81	34.42	16.26	15.75
T_4	19.74	19.06	14.61	14.63	6.00	5.21	16.37	15.66	31.46	30.89	14.20	13.67
T_5	4.34	3.52	2.39	2.51	2.00	1.06	2.68	1.86	6.62	5.93	2.33	1.73
T_6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
T_7	9.65	8.88	5.74	5.75	4.14	3.34	6.43	5.65	14.83	14.10	6.14	5.56
T_8	7.47	6.69	4.16	4.17	3.46	2.65	4.66	3.86	11.32	10.56	4.34	3.75
T ₉	13.67	12.94	8.44	8.56	5.71	4.81	9.45	8.69	20.95	20.38	8.83	8.27
T_{10}	12.16	11.41	7.53	7.54	5.00	4.21	8.43	7.67	18.76	18.07	7.78	7.22
Variance	48.60	47.16	29.44	29.91	4.20	3.42	36.93	35.87	125.10	124.34	27.88	27.11
Standard deviation	6.97	6.87	5.43	5.47	2.05	1.85	6.08	5.99	11.18	11.15	5.28	5.21
Standard error	1.86	1.84	1.45	1.46	0.55	0.49	1.62	1.60	2.99	2.98	1.41	1.39

Explanations: T_1 – T_{10} as in Tab. S5.

Table S10. The avoidable loss in the resulting yield and quality of 'Zebda' mango trees in the sprayed treatments compared to the control treatment as a result of spraying some chemical insecticides against the *Ferrisia virgata*, either with or without the addition of foliar nutrients

Tourse	Yield per	tree (kg)	TSS	(%)	Acidit	ty (%)	TSS to ac	idity ratio	Total su	gars (%)
Treatment	2021/2022	2022/2023	2021/2022	2022/2023	2021/2022	2022/2023	2021/2022	2022/2023	2021/2022	2022/2023
T_1	15.15	15.01	25.11	24.65	9.80	9.65	51.28	52.41	16.02	18.31
T_2	12.44	12.29	22.76	22.29	11.84	14.12	48.62	48.44	16.77	15.04
T_3	18.62	18.49	31.23	30.81	0.00	0.00	59.62	60.57	21.39	22.51
T_4	16.37	16.23	28.03	27.59	7.35	3.76	54.41	57.13	19.98	19.78
T ₅	2.68	2.52	6.34	5.77	37.92	37.67	11.48	13.68	2.49	3.24
T_6	0.00	0.00	0.00	0.00	41.32	43.03	0.00	0.00	0.00	0.00
T_7	6.43	6.28	13.50	12.97	28.58	30.66	28.93	28.49	7.21	7.77
T_8	4.66	4.50	10.54	10.00	34.37	36.28	20.02	19.52	4.70	5.63
T ₉	10.32	10.17	18.19	17.69	19.28	21.63	40.52	40.15	11.09	12.47
T ₁₀	8.43	8.28	16.60	16.09	22.17	24.43	37.13	36.73	10.71	10.19
Variance	38.04	37.82	97.84	96.73	197.29	222.68	389.70	401.51	54.94	55.58
Standard deviation	6.17	6.15	9.89	9.83	14.05	14.92	19.74	20.04	7.41	7.46
Standard error	1.65	1.64	2.64	2.63	3.75	3.99	5.28	5.36	1.98	1.99

Explanations: TSS = total soluble solids, T_1-T_{10} as in Tab. S5.